-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
484 lines (402 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import os
import re
import shutil
import sys
import time
from functools import partial
from importlib import import_module
import numpy as np
import yaml
import chainer
from chainer import iterators
from chainer import optimizers
from chainer import serializers
from chainer import training
from chainer.training import extension
from chainer.training import extensions
from chainer.training import triggers
from chainer.training import updaters
try:
HAVE_NCCL = updaters.MultiprocessParallelUpdater.available()
except Exception:
HAVE_NCCL = False
class ConfigBase(object):
def __init__(self, required_keys, optional_keys, kwargs, name):
for key in required_keys:
if key not in kwargs:
raise KeyError(
'{} config should have the key {}'.format(name, key))
setattr(self, key, kwargs[key])
for key in optional_keys:
if key in kwargs:
setattr(self, key, kwargs[key])
elif key == 'args':
setattr(self, key, {})
else:
setattr(self, key, None)
class Dataset(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'name',
'batchsize',
'module',
]
optional_keys = [
'args',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class Extension(ConfigBase):
def __init__(self, **kwargs):
required_keys = []
optional_keys = [
'dump_graph',
'Evaluator',
'ExponentialShift',
'LinearShift',
'LogReport',
'observe_lr',
'observe_value',
'snapshot',
'PlotReport',
'PrintReport',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class Model(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'name',
'module',
]
optional_keys = [
'args'
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class Loss(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'name',
'module',
]
optional_keys = [
'args',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class Optimizer(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'method'
]
optional_keys = [
'args',
'weight_decay',
'lr_drop_ratio',
'lr_drop_trigger',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class UpdaterCreator(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'name',
'module',
]
optional_keys = [
'args',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class Custom(ConfigBase):
def __init__(self, **kwargs):
required_keys = [
'module',
'name'
]
optional_keys = [
'args',
]
super().__init__(
required_keys, optional_keys, kwargs, self.__class__.__name__)
class PolynomialShift(extension.Extension):
def __init__(self, attr, power, stop_trigger, batchsize, len_dataset):
self._attr = attr
self._power = power
self._init = None
self._t = 0
self._last_value = 0
if stop_trigger[1] == 'iteration':
self._maxiter = stop_trigger[0]
elif stop_trigger[1] == 'epoch':
n_iter_per_epoch = len_dataset / float(batchsize)
self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)
def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer('main')
# ensure that _init is set
if self._init is None:
self._init = getattr(optimizer, self._attr)
def __call__(self, trainer):
self._t += 1
optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value
def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):
self._last_value = np.asscalar(self._last_value)
def get_dataset_from_config(config):
def get_dataset_object(key):
d = Dataset(**config['dataset'][key])
mod = import_module(d.module)
dataset = getattr(mod, d.name)(**d.args)
filename = mod.__file__
bname = os.path.basename(filename)
shutil.copy(
filename, '{}/{}_{}'.format(d['result_dir'], key, bname))
return dataset
datasets = dict(
[(key, get_dataset_object(key)) for key in config['dataset']])
return datasets['train'], datasets['valid']
def get_model_from_config(config):
model = Model(**config['model'])
loss = Loss(**config['loss'])
mod = import_module(model.module)
model_file = mod.__file__
model = getattr(mod, model.name)
# Copy model file
if chainer.config.train:
dst = '{}/{}'.format(
config['result_dir'], os.path.basename(model_file))
if not os.path.exists(dst):
shutil.copy(model_file, dst)
# Initialize
if model.args is not None:
model = model(**model.args)
else:
model = model()
# Wrap with a loss class
if chainer.config.train and loss.name is not None:
mod = import_module(loss.module)
loss_file = mod.__file__
loss = getattr(mod, loss.name)
if loss.args is not None:
model = loss(model, **loss.args)
else:
model = loss(model)
# Copy loss file
dst = '{}/{}'.format(config['result_dir'], os.path.basename(loss_file))
if not os.path.exists(dst):
shutil.copy(loss_file, dst)
return model
def get_optimizer_from_config(model, config):
opt_config = Optimizer(**config['optimizer'])
optimizer = getattr(optimizers, opt_config.method)(**opt_config.args)
optimizer.setup(model)
if opt_config.weight_decay is not None:
optimizer.add_hook(
chainer.optimizer.WeightDecay(opt_config.weight_decay))
return optimizer
def get_updater_creator_from_config(config):
updater_creator_config = UpdaterCreator(**config['updater_creator'])
mod = import_module(updater_creator_config.module)
updater_creator = getattr(mod, updater_creator_config.name)
if args is not None:
return partial(updater_creator, **updater_creator_config.args)
else:
return updater_creator
def get_custum_extension_from_config(config):
config = Custom(**config)
mod = import_module(config.module)
if hasattr(config, 'args'):
ext = getattr(mod, config.name)(**config.args)
else:
ext = getattr(mod, config.name)()
return ext
def create_result_dir(prefix='result'):
result_dir = 'results/{}_{}_0'.format(
prefix, time.strftime('%Y-%m-%d_%H-%M-%S'))
while os.path.exists(result_dir):
i = result_dir.split('_')[-1]
result_dir = re.sub('_[0-9]+$', result_dir, '_{}'.format(i))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
return result_dir
def create_result_dir_from_config_path(config_path):
config_name = os.path.splitext(os.path.basename(config_path))[0]
return create_result_dir(config_name)
def save_config_get_log_fn(result_dir, config_path):
save_name = os.path.basename(config_path)
a, b = os.path.splitext(save_name)
save_name = '{}_0{}'.format(a, b)
i = 0
while os.path.exists('{}/{}'.format(result_dir, save_name)):
i += 1
save_name = '{}_{}{}'.format(a, i, b)
shutil.copy(config_path, '{}/{}'.format(result_dir, save_name))
return 'log_{}'.format(i)
def create_iterators(train_dataset, valid_dataset, config):
train = Dataset(**config['dataset']['train'])
valid = Dataset(**config['dataset']['valid'])
train_iter = iterators.MultiprocessIterator(
train_dataset, train.batchsize)
valid_iter = iterators.MultiprocessIterator(
valid_dataset, valid.batchsize, repeat=False, shuffle=False)
return train_iter, valid_iter
def create_updater(train_iter, optimizer, devices):
if HAVE_NCCL and len(devices) > 1:
updater = training.updaters.MultiprocessParallelUpdater(
train_iter, optimizer, devices=devices)
elif len(devices) > 1:
optimizer.lr /= len(devices)
updater = training.ParallelUpdater(
train_iter, optimizer, devices=devices)
else:
updater = training.StandardUpdater(
train_iter, optimizer, device=devices['main'])
return updater
def get_trainer(args):
config = yaml.load(open(args.config))
# Set workspace size
if 'max_workspace_size' in config:
chainer.cuda.set_max_workspace_size(config['max_workspace_size'])
# Show the setup information
print('==========================================')
print('Chainer version: {}'.format(chainer.__version__))
print('CuPy version: {}'.format(chainer.cuda.cupy.__version__))
print('cuda: {}, cudnn: {}, nccl: {}'.format(
chainer.cuda.available, chainer.cuda.cudnn_enabled, ))
# Prepare devices
print('Devices:')
devices = {'main': args.gpus[0]}
print('\tmain:', args.gpus[0])
for gid in args.gpus[1:]:
devices['gpu{}'.format(gid)] = gid
print('\tgpu{}'.format(gid), gid)
# Create result_dir
if args.result_dir is not None:
config['result_dir'] = args.result_dir
model_fn = config['model']['module'].split('.')[-1]
sys.path.insert(0, args.result_dir)
config['model']['module'] = model_fn
else:
config['result_dir'] = create_result_dir_from_config_path(args.config)
log_fn = save_config_get_log_fn(config['result_dir'], args.config)
print('result_dir:', config['result_dir'])
# Instantiate model
model = get_model_from_config(config)
print('model:', model.__class__.__name__)
# Initialize optimizer
optimizer = get_optimizer_from_config(model, config)
print('optimizer:', optimizer.__class__.__name__)
# Setting up datasets
train_dataset, valid_dataset = get_dataset_from_config(config)
print('train_dataset: {}'.format(len(train_dataset)),
train_dataset.__class__.__name__)
print('valid_dataset: {}'.format(len(valid_dataset)),
valid_dataset.__class__.__name__)
# Create iterators
train_iter, valid_iter = create_iterators(
train_dataset, valid_dataset, config)
print('train_iter:', train_iter.__class__.__name__)
print('valid_iter:', valid_iter.__class__.__name__)
# Create updater and trainer
if 'updater_creator' in config:
updater_creator = get_updater_creator_from_config(config)
updater = updater_creator(train_iter, optimizer, devices)
else:
updater = create_updater(train_iter, optimizer, devices)
print('updater:', updater.__class__.__name__)
# Create Trainer
trainer = training.Trainer(
updater, config['stop_trigger'], out=config['result_dir'])
print('Trainer stops:', config['stop_trigger'])
# Trainer extensions
for ext in config['trainer_extension']:
ext, values = ext.popitem()
if ext == 'LogReport':
trigger = values['trigger']
trainer.extend(extensions.LogReport(
trigger=trigger, log_name=log_fn))
elif ext == 'observe_lr':
trainer.extend(extensions.observe_lr(), trigger=values['trigger'])
elif ext == 'dump_graph':
trainer.extend(extensions.dump_graph(**values))
elif ext == 'Evaluator':
assert 'module' in values
mod = import_module(values['module'])
evaluator = getattr(mod, values['name'])
if evaluator is extensions.Evaluator:
evaluator = evaluator(
valid_iter, model, device=args.gpus[0])
else:
evaluator = evaluator(valid_iter, model.predictor)
trainer.extend(
evaluator, trigger=values['trigger'], name=values['prefix'])
elif ext == 'PlotReport':
trainer.extend(extensions.PlotReport(**values))
elif ext == 'PrintReport':
trigger = values.pop('trigger')
trainer.extend(extensions.PrintReport(**values),
trigger=trigger)
elif ext == 'ProgressBar':
upd_int = values['update_interval']
trigger = values['trigger']
trainer.extend(extensions.ProgressBar(
update_interval=upd_int), trigger=trigger)
elif ext == 'snapshot':
filename = values['filename']
trigger = values['trigger']
trainer.extend(extensions.snapshot(
filename=filename), trigger=trigger)
elif ext == 'ParameterStatistics':
links = []
for link_name in values.pop('links'):
lns = [ln.strip() for ln in link_name.split('.') if ln.strip()]
target = model.predictor
for ln in lns:
target = getattr(target, ln)
links.append(target)
trainer.extend(extensions.ParameterStatistics(links, **values))
elif ext == 'custom':
custom_extension = get_custum_extension_from_config(values)
trainer.extend(custom_extension)
# LR decay
if 'lr_drop_ratio' in config['optimizer'] \
and 'lr_drop_triggers' in config['optimizer']:
ratio = config['optimizer']['lr_drop_ratio']
points = config['optimizer']['lr_drop_triggers']['points']
unit = config['optimizer']['lr_drop_triggers']['unit']
drop_trigger = triggers.ManualScheduleTrigger(points, unit)
def lr_drop(trainer):
trainer.updater.get_optimizer('main').lr *= ratio
trainer.extend(lr_drop, trigger=drop_trigger)
if 'lr_drop_poly_power' in config['optimizer']:
power = config['optimizer']['lr_drop_poly_power']
stop_trigger = config['stop_trigger']
batchsize = train_iter.batch_size
len_dataset = len(train_dataset)
trainer.extend(
PolynomialShift('lr', power, stop_trigger, batchsize, len_dataset),
trigger=(1, 'iteration'))
# Resume
if args.resume is not None:
serializers.load_npz(args.resume, trainer)
print('Resumed from:', args.resume)
print('==========================================')
return trainer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ChainerCMD')
parser.add_argument('config', type=str)
parser.add_argument('--gpu', action='store_true')
parser.add_argument('--result_dir', type=str, default=None)
parser.add_argument('--resume', type=str, default=None)
args = parser.parse_args()
trainer = get_trainer(args)
trainer.run()