-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathcalib_data.py
32 lines (30 loc) · 1.03 KB
/
calib_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from datasets import load_dataset
def get_calib_dataset(data="pileval", tokenizer=None, n_samples=512, block_size=512):
if data == "pileval":
dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation")
else:
raise NotImplementedError
dataset = dataset.shuffle(seed=42)
samples = []
n_run = 0
for data in dataset:
line = data["text"]
line = line.strip()
line_encoded = tokenizer.encode(line)
if len(line_encoded) > 512:
continue
sample = torch.tensor([line_encoded])
if sample.numel() == 0:
continue
samples.append(sample)
n_run += 1
if n_run == n_samples:
break
# now concatenate all samples and split according to block size
cat_samples = torch.cat(samples, dim=1)
n_split = cat_samples.shape[1] // block_size
print(f" * Split into {n_split} blocks")
return [
cat_samples[:, i * block_size : (i + 1) * block_size] for i in range(n_split)
]