forked from Jittor/JGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaae.py
178 lines (148 loc) · 6.43 KB
/
aae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import numpy as np
import time
import cv2
import jittor as jt
from jittor import init
from jittor import nn
jt.flags.use_cuda = 1
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=10, help="dimensionality of the latent code")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=3000, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
def reparameterization(mu, logvar):
std = jt.exp(logvar / 2)
sampled_z = jt.array(np.random.normal(0, 1, (mu.shape[0], opt.latent_dim))).float32()
z = sampled_z * std + mu
return z
img_shape = (opt.channels, opt.img_size, opt.img_size)
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
self.model = nn.Sequential(nn.Linear(int(np.prod(img_shape)), 512), nn.Leaky_relu(0.2), nn.Linear(512, 512), nn.BatchNorm1d(512), nn.Leaky_relu(0.2))
self.mu = nn.Linear(512, opt.latent_dim)
self.logvar = nn.Linear(512, opt.latent_dim)
def execute(self, img):
img_flat = jt.reshape(img, [img.shape[0], (- 1)])
x = self.model(img_flat)
mu = self.mu(x)
logvar = self.logvar(x)
z = reparameterization(mu, logvar)
return z
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.model = nn.Sequential(nn.Linear(opt.latent_dim, 512), nn.Leaky_relu(0.2), nn.Linear(512, 512), nn.BatchNorm1d(512), nn.Leaky_relu(0.2), nn.Linear(512, int(np.prod(img_shape))), nn.Tanh())
def execute(self, z):
img_flat = self.model(z)
img = jt.reshape(img_flat, [img_flat.shape[0], *img_shape])
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(nn.Linear(opt.latent_dim, 512), nn.Leaky_relu(0.2), nn.Linear(512, 256), nn.Leaky_relu(0.2), nn.Linear(256, 1), nn.Sigmoid())
def execute(self, z):
validity = self.model(z)
return validity
# Use binary cross-entropy loss
adversarial_loss = nn.BCELoss()
pixelwise_loss = nn.L1Loss()
# Initialize generator and discriminator
encoder = Encoder()
decoder = Decoder()
discriminator = Discriminator()
# Configure data loader
from jittor.dataset.mnist import MNIST
import jittor.transform as transform
transform = transform.Compose([
transform.Resize(opt.img_size),
transform.Gray(),
transform.ImageNormalize(mean=[0.5], std=[0.5]),
])
train_loader = MNIST(train=True, transform=transform).set_attrs(batch_size=opt.batch_size, shuffle=True)
# Optimizers
optimizer_G = nn.Adam(
encoder.parameters() + decoder.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)
)
optimizer_D = nn.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
def save_image(img, path, nrow=10, padding=5):
N,C,W,H = img.shape
if (N%nrow!=0):
print("N%nrow!=0")
return
ncol=int(N/nrow)
img_all = []
for i in range(ncol):
img_ = []
for j in range(nrow):
img_.append(img[i*nrow+j])
img_.append(np.zeros((C,W,padding)))
img_all.append(np.concatenate(img_, 2))
img_all.append(np.zeros((C,padding,img_all[0].shape[2])))
img = np.concatenate(img_all, 1)
img = np.concatenate([np.zeros((C,padding,img.shape[2])), img], 1)
img = np.concatenate([np.zeros((C,img.shape[1],padding)), img], 2)
min_=img.min()
max_=img.max()
img=(img-min_)/(max_-min_)*255
img=img.transpose((1,2,0))
if C==3:
img = img[:,:,::-1]
cv2.imwrite(path,img)
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits"""
# Sample noise
z = jt.array(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))).float32().stop_grad()
gen_imgs = decoder(z)
save_image(gen_imgs.numpy(), "images/%d.png" % batches_done, nrow=n_row)
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, _) in enumerate(train_loader):
sta = time.time()
# Adversarial ground truths
valid = jt.ones([imgs.shape[0], 1]).stop_grad()
fake = jt.zeros([imgs.shape[0], 1]).stop_grad()
# Configure input
real_imgs = jt.array(imgs).stop_grad()
# -----------------
# Train Generator
# -----------------
encoded_imgs = encoder(real_imgs)
decoded_imgs = decoder(encoded_imgs)
# Loss measures generator's ability to fool the discriminator
g_loss = (0.001 * adversarial_loss(discriminator(encoded_imgs), valid) + 0.999 * pixelwise_loss(
decoded_imgs, real_imgs
))
optimizer_G.step(g_loss)
# ---------------------
# Train Discriminator
# ---------------------
# Sample noise as discriminator ground truth
z = jt.array(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))).float32().stop_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(discriminator(z), valid).float32()
fake_loss = adversarial_loss(discriminator(encoded_imgs.detach()), fake).float32()
d_loss = 0.5 * (real_loss + fake_loss)
optimizer_D.step(d_loss)
jt.sync_all()
if i % 50 == 0:
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] [Time: %f]"
% (epoch, opt.n_epochs, i, len(train_loader), d_loss.data[0], g_loss.data[0], time.time() - sta)
)
batches_done = epoch * len(train_loader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)