-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
239 lines (187 loc) · 9.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import os
import torch
from tqdm import tqdm
from torch.autograd import Variable
from torch.autograd import grad as torch_grad
import matplotlib.pyplot as plt
from torch.utils.tensorboard import writer, SummaryWriter
from torch.utils.data import DataLoader
from math import pi
from datasets.datasets import Sines, ARMA
from models.wgangp import Generator, Critic
class Trainer:
NOISE_LENGTH = 50
def __init__(self, generator, critic, gen_optimizer, critic_optimizer,
gp_weight=10, critic_iterations=5, print_every=200, use_cuda=False, checkpoint_frequency=200):
self.g = generator
self.g_opt = gen_optimizer
self.c = critic
self.c_opt = critic_optimizer
self.losses = {'g': [], 'c': [], 'GP': [], 'gradient_norm': []}
self.num_steps = 0
self.use_cuda = use_cuda
self.gp_weight = gp_weight
self.critic_iterations = critic_iterations
self.print_every = print_every
self.checkpoint_frequency = checkpoint_frequency
if self.use_cuda:
self.g.cuda()
self.c.cuda()
def _critic_train_iteration(self, real_data):
batch_size = real_data.size()[0]
noise_shape = (batch_size, self.NOISE_LENGTH)
generated_data = self.sample_generator(noise_shape)
real_data = Variable(real_data)
if self.use_cuda:
real_data = real_data.cuda()
# Pass data through the Critic
c_real = self.c(real_data)
c_generated = self.c(generated_data)
# Get gradient penalty
gradient_penalty = self._gradient_penalty(real_data, generated_data)
self.losses['GP'].append(gradient_penalty.data.item())
# Create total loss and optimize
self.c_opt.zero_grad()
d_loss = c_generated.mean() - c_real.mean() + gradient_penalty
d_loss.backward()
self.c_opt.step()
self.losses['c'].append(d_loss.data.item())
def _generator_train_iteration(self, data):
self.g_opt.zero_grad()
batch_size = data.size()[0]
latent_shape = (batch_size, self.NOISE_LENGTH)
generated_data = self.sample_generator(latent_shape)
# Calculate loss and optimize
d_generated = self.c(generated_data)
g_loss = - d_generated.mean()
g_loss.backward()
self.g_opt.step()
self.losses['g'].append(g_loss.data.item())
def _gradient_penalty(self, real_data, generated_data):
batch_size = real_data.size()[0]
# Calculate interpolation
alpha = torch.rand(batch_size, 1)
alpha = alpha.expand_as(real_data)
if self.use_cuda:
alpha = alpha.cuda()
interpolated = alpha * real_data.data + (1 - alpha) * generated_data.data
interpolated = Variable(interpolated, requires_grad=True)
if self.use_cuda:
interpolated = interpolated.cuda()
# Pass interpolated data through Critic
prob_interpolated = self.c(interpolated)
# Calculate gradients of probabilities with respect to examples
gradients = torch_grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(prob_interpolated.size()).cuda() if self.use_cuda
else torch.ones(prob_interpolated.size()), create_graph=True,
retain_graph=True)[0]
# Gradients have shape (batch_size, num_channels, series length),
# here we flatten to take the norm per example for every batch
gradients = gradients.view(batch_size, -1)
self.losses['gradient_norm'].append(gradients.norm(2, dim=1).mean().data.item())
# Derivatives of the gradient close to 0 can cause problems because of the
# square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Return gradient penalty
return self.gp_weight * ((gradients_norm - 1) ** 2).mean()
def _train_epoch(self, data_loader, epoch):
for i, data in enumerate(data_loader):
self.num_steps += 1
self._critic_train_iteration(data.float())
# Only update generator every critic_iterations iterations
if self.num_steps % self.critic_iterations == 0:
self._generator_train_iteration(data)
if i % self.print_every == 0:
global_step = i + epoch * len(data_loader.dataset)
writer.add_scalar('Losses/Critic', self.losses['c'][-1], global_step)
writer.add_scalar('Losses/Gradient Penalty', self.losses['GP'][-1], global_step)
writer.add_scalar('Gradient Norm', self.losses['gradient_norm'][-1], global_step)
if self.num_steps > self.critic_iterations:
writer.add_scalar('Losses/Generator', self.losses['g'][-1], global_step)
def train(self, data_loader, epochs, plot_training_samples=True, checkpoint=None):
if checkpoint:
path = os.path.join('checkpoints', checkpoint)
state_dicts = torch.load(path, map_location=torch.device('cpu'))
self.g.load_state_dict(state_dicts['g_state_dict'])
self.c.load_state_dict(state_dicts['d_state_dict'])
self.g_opt.load_state_dict(state_dicts['g_opt_state_dict'])
self.c_opt.load_state_dict(state_dicts['d_opt_state_dict'])
# Define noise_shape
noise_shape = (1, self.NOISE_LENGTH)
if plot_training_samples:
# Fix latents to see how series generation improves during training
fixed_latents = Variable(self.sample_latent(noise_shape))
if self.use_cuda:
fixed_latents = fixed_latents.cuda()
for epoch in tqdm(range(epochs)):
# Sample a different region of the latent distribution to check for mode collapse
dynamic_latents = Variable(self.sample_latent(noise_shape))
if self.use_cuda:
dynamic_latents = dynamic_latents.cuda()
self._train_epoch(data_loader, epoch + 1)
# Save checkpoint
if epoch % self.checkpoint_frequency == 0:
torch.save({
'epoch': epoch,
'd_state_dict': self.c.state_dict(),
'g_state_dict': self.g.state_dict(),
'd_opt_state_dict': self.c_opt.state_dict(),
'g_opt_state_dict': self.g_opt.state_dict(),
}, 'checkpoints/epoch_{}.pkl'.format(epoch))
if plot_training_samples and (epoch % self.print_every == 0):
self.g.eval()
# Generate fake data using both fixed and dynamic latents
fake_data_fixed_latents = self.g(fixed_latents).cpu().data
fake_data_dynamic_latents = self.g(dynamic_latents).cpu().data
plt.figure()
plt.plot(fake_data_fixed_latents.numpy()[0].T)
plt.savefig('training_samples/fixed_latents/series_epoch_{}.png'.format(epoch))
plt.close()
plt.figure()
plt.plot(fake_data_dynamic_latents.numpy()[0].T)
plt.savefig('training_samples/dynamic_latents/series_epoch_{}.png'.format(epoch))
plt.close()
self.g.train()
def sample_generator(self, latent_shape):
latent_samples = Variable(self.sample_latent(latent_shape))
if self.use_cuda:
latent_samples = latent_samples.cuda()
return self.g(latent_samples)
@staticmethod
def sample_latent(shape):
return torch.randn(shape)
def sample(self, num_samples):
generated_data = self.sample_generator(num_samples)
return generated_data.data.cpu().numpy()
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='GANetano', usage='%(prog)s [options]')
parser.add_argument('-ds', '--dataset', type=str, dest='dataset', default='sines',
help='choose between sines and arma')
parser.add_argument('-ln', '--logname', type=str, dest='log_name', default=None, required=True,
help='tensorboard filename')
parser.add_argument('-e', '--epochs', type=int, dest='epochs', default=15000, help='number of training epochs')
parser.add_argument('-bs', '--batches', type=int, dest='batches', default=16,
help='number of batches per training iteration')
parser.add_argument('-cp', '--checkpoint', type=str, dest='checkpoint', default=None,
help='checkpoint to use for a warm start')
args = parser.parse_args()
# Instantiate Generator and Critic + initialize weights
g = Generator()
g_opt = torch.optim.RMSprop(g.parameters(), lr=0.00005)
d = Critic()
d_opt = torch.optim.RMSprop(d.parameters(), lr=0.00005)
# Create Dataloader
if args.dataset == 'sines':
dataset = Sines(frequency_range=[0, 2 * pi], amplitude_range=[0, 2 * pi], seed=42, n_series=200)
else:
dataset = ARMA((0.7, ), (0.2, ))
dataloader = DataLoader(dataset, batch_size=args.batches)
# Instantiate Trainer
trainer = Trainer(g, d, g_opt, d_opt, use_cuda=torch.cuda.is_available())
# Train model
print('Training is about to start...')
# Instantiate Tensorboard writer
tb_logdir = os.path.join('..', 'tensorboard', args.log_name)
writer = SummaryWriter(log_dir=tb_logdir)
trainer.train(dataloader, epochs=args.epochs, plot_training_samples=True, checkpoint=args.checkpoint)