-
Notifications
You must be signed in to change notification settings - Fork 13
/
pair_nequip.cpp
512 lines (429 loc) · 17.3 KB
/
pair_nequip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://lammps.sandia.gov/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Anders Johansson (Harvard)
------------------------------------------------------------------------- */
#include <pair_nequip.h>
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "potential_file_reader.h"
#include "tokenizer.h"
#include <cmath>
#include <cstring>
#include <numeric>
#include <cassert>
#include <iostream>
#include <sstream>
#include <string>
#include <torch/torch.h>
#include <torch/script.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
//#include <c10/cuda/CUDACachingAllocator.h>
// We have to do a backward compatability hack for <1.10
// https://discuss.pytorch.org/t/how-to-check-libtorch-version/77709/4
// Basically, the check in torch::jit::freeze
// (see https://github.com/pytorch/pytorch/blob/dfbd030854359207cb3040b864614affeace11ce/torch/csrc/jit/api/module.cpp#L479)
// is wrong, and we have ro "reimplement" the function
// to get around that...
// it's broken in 1.8 and 1.9
// BUT the internal logic in the function is wrong in 1.10
// So we only use torch::jit::freeze in >=1.11
#if (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR <= 10)
#define DO_TORCH_FREEZE_HACK
// For the hack, need more headers:
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/frozen_ops_to_mkldnn.h>
#endif
using namespace LAMMPS_NS;
PairNEQUIP::PairNEQUIP(LAMMPS *lmp) : Pair(lmp) {
restartinfo = 0;
manybody_flag = 1;
if(torch::cuda::is_available()){
device = torch::kCUDA;
}
else {
device = torch::kCPU;
}
std::cout << "NEQUIP is using device " << device << "\n";
if(const char* env_p = std::getenv("NEQUIP_DEBUG")){
std::cout << "PairNEQUIP is in DEBUG mode, since NEQUIP_DEBUG is in env\n";
debug_mode = 1;
}
}
PairNEQUIP::~PairNEQUIP(){
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(type_mapper);
}
}
void PairNEQUIP::init_style(){
if (atom->tag_enable == 0)
error->all(FLERR,"Pair style NEQUIP requires atom IDs");
// need a full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
// TODO: probably also
neighbor->requests[irequest]->ghost = 0;
// TODO: I think Newton should be off, enforce this.
// The network should just directly compute the total forces
// on the "real" atoms, with no need for reverse "communication".
// May not matter, since f[j] will be 0 for the ghost atoms anyways.
if (force->newton_pair == 1)
error->all(FLERR,"Pair style NEQUIP requires newton pair off");
}
double PairNEQUIP::init_one(int i, int j)
{
return cutoff;
}
void PairNEQUIP::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
memory->create(cutsq,n+1,n+1,"pair:cutsq");
memory->create(type_mapper, n+1, "pair:type_mapper");
}
void PairNEQUIP::settings(int narg, char ** /*arg*/) {
// "flare" should be the only word after "pair_style" in the input file.
if (narg > 0)
error->all(FLERR, "Illegal pair_style command");
}
void PairNEQUIP::coeff(int narg, char **arg) {
if (!allocated)
allocate();
int ntypes = atom->ntypes;
// Should be exactly 3 arguments following "pair_coeff" in the input file.
if (narg != (3+ntypes))
error->all(FLERR, "Incorrect args for pair coefficients");
// Ensure I,J args are "* *".
if (strcmp(arg[0], "*") != 0 || strcmp(arg[1], "*") != 0)
error->all(FLERR, "Incorrect args for pair coefficients");
for (int i = 1; i <= ntypes; i++)
for (int j = i; j <= ntypes; j++)
setflag[i][j] = 0;
// Parse the definition of each atom type
char **elements = new char*[ntypes+1];
for (int i = 1; i <= ntypes; i++){
elements[i] = new char [strlen(arg[i+2])+1];
strcpy(elements[i], arg[i+2]);
if (screen) fprintf(screen, "NequIP Coeff: type %d is element %s\n", i, elements[i]);
}
// Initiate type mapper
for (int i = 1; i<= ntypes; i++){
type_mapper[i] = -1;
}
std::cout << "Loading model from " << arg[2] << "\n";
std::unordered_map<std::string, std::string> metadata = {
{"config", ""},
{"nequip_version", ""},
{"r_max", ""},
{"n_species", ""},
{"type_names", ""},
{"_jit_bailout_depth", ""},
{"_jit_fusion_strategy", ""},
{"allow_tf32", ""}
};
model = torch::jit::load(std::string(arg[2]), device, metadata);
model.eval();
// Check if model is a NequIP model
if (metadata["nequip_version"].empty()) {
error->all(FLERR, "The indicated TorchScript file does not appear to be a deployed NequIP model; did you forget to run `nequip-deploy`?");
}
// If the model is not already frozen, we should freeze it:
// This is the check used by PyTorch: https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/api/module.cpp#L476
if (model.hasattr("training")) {
std::cout << "Freezing TorchScript model...\n";
#ifdef DO_TORCH_FREEZE_HACK
// Do the hack
// Copied from the implementation of torch::jit::freeze,
// except without the broken check
// See https://github.com/pytorch/pytorch/blob/dfbd030854359207cb3040b864614affeace11ce/torch/csrc/jit/api/module.cpp
bool optimize_numerics = true; // the default
// the {} is preserved_attrs
auto out_mod = freeze_module(
model, {}
);
// See 1.11 bugfix in https://github.com/pytorch/pytorch/pull/71436
auto graph = out_mod.get_method("forward").graph();
OptimizeFrozenGraph(graph, optimize_numerics);
model = out_mod;
#else
// Do it normally
model = torch::jit::freeze(model);
#endif
}
#if (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR <= 10)
// Set JIT bailout to avoid long recompilations for many steps
size_t jit_bailout_depth;
if (metadata["_jit_bailout_depth"].empty()) {
// This is the default used in the Python code
jit_bailout_depth = 2;
} else {
jit_bailout_depth = std::stoi(metadata["_jit_bailout_depth"]);
}
torch::jit::getBailoutDepth() = jit_bailout_depth;
#else
// In PyTorch >=1.11, this is now set_fusion_strategy
torch::jit::FusionStrategy strategy;
if (metadata["_jit_fusion_strategy"].empty()) {
// This is the default used in the Python code
strategy = {{torch::jit::FusionBehavior::DYNAMIC, 3}};
} else {
std::stringstream strat_stream(metadata["_jit_fusion_strategy"]);
std::string fusion_type, fusion_depth;
while(std::getline(strat_stream, fusion_type, ',')) {
std::getline(strat_stream, fusion_depth, ';');
strategy.push_back({fusion_type == "STATIC" ? torch::jit::FusionBehavior::STATIC : torch::jit::FusionBehavior::DYNAMIC, std::stoi(fusion_depth)});
}
}
torch::jit::setFusionStrategy(strategy);
#endif
// Set whether to allow TF32:
bool allow_tf32;
if (metadata["allow_tf32"].empty()) {
// Better safe than sorry
allow_tf32 = false;
} else {
// It gets saved as an int 0/1
allow_tf32 = std::stoi(metadata["allow_tf32"]);
}
// See https://pytorch.org/docs/stable/notes/cuda.html
at::globalContext().setAllowTF32CuBLAS(allow_tf32);
at::globalContext().setAllowTF32CuDNN(allow_tf32);
// std::cout << "Information from model: " << metadata.size() << " key-value pairs\n";
// for( const auto& n : metadata ) {
// std::cout << "Key:[" << n.first << "] Value:[" << n.second << "]\n";
// }
cutoff = std::stod(metadata["r_max"]);
// match the type names in the pair_coeff to the metadata
// to construct a type mapper from LAMMPS type to NequIP atom_types
int n_species = std::stod(metadata["n_species"]);
std::stringstream ss;
ss << metadata["type_names"];
for (int i = 0; i < n_species; i++){
char ele[100];
ss >> ele;
for (int itype = 1; itype <= ntypes; itype++)
if (strcmp(elements[itype], ele) == 0)
type_mapper[itype] = i;
}
// set setflag i,j for type pairs where both are mapped to elements
for (int i = 1; i <= ntypes; i++)
for (int j = i; j <= ntypes; j++)
if ((type_mapper[i] >= 0) && (type_mapper[j] >= 0))
setflag[i][j] = 1;
if (elements){
for (int i=1; i<ntypes; i++)
if (elements[i]) delete [] elements[i];
delete [] elements;
}
}
// Force and energy computation
void PairNEQUIP::compute(int eflag, int vflag){
ev_init(eflag, vflag);
// Get info from lammps:
// Atom positions, including ghost atoms
double **x = atom->x;
// Atom forces
double **f = atom->f;
// Atom IDs, unique, reproducible, the "real" indices
// Probably 1-based
tagint *tag = atom->tag;
// Atom types, 1-based
int *type = atom->type;
// Number of local/real atoms
int nlocal = atom->nlocal;
// Whether Newton is on (i.e. reverse "communication" of forces on ghost atoms).
int newton_pair = force->newton_pair;
// Should probably be off.
if (newton_pair==1)
error->all(FLERR,"Pair style NEQUIP requires 'newton off'");
// Number of local/real atoms
int inum = list->inum;
assert(inum==nlocal); // This should be true, if my understanding is correct
// Number of ghost atoms
int nghost = list->gnum;
// Total number of atoms
int ntotal = inum + nghost;
// Mapping from neigh list ordering to x/f ordering
int *ilist = list->ilist;
// Number of neighbors per atom
int *numneigh = list->numneigh;
// Neighbor list per atom
int **firstneigh = list->firstneigh;
// Total number of bonds (sum of number of neighbors)
int nedges = std::accumulate(numneigh, numneigh+ntotal, 0);
torch::Tensor pos_tensor = torch::zeros({nlocal, 3});
torch::Tensor tag2type_tensor = torch::zeros({nlocal}, torch::TensorOptions().dtype(torch::kInt64));
torch::Tensor periodic_shift_tensor = torch::zeros({3});
torch::Tensor cell_tensor = torch::zeros({3,3});
auto pos = pos_tensor.accessor<float, 2>();
long edges[2*nedges];
float edge_cell_shifts[3*nedges];
auto tag2type = tag2type_tensor.accessor<long, 1>();
auto periodic_shift = periodic_shift_tensor.accessor<float, 1>();
auto cell = cell_tensor.accessor<float,2>();
// Inverse mapping from tag to "real" atom index
std::vector<int> tag2i(inum);
// Loop over real atoms to store tags, types and positions
for(int ii = 0; ii < inum; ii++){
int i = ilist[ii];
int itag = tag[i];
int itype = type[i];
// Inverse mapping from tag to x/f atom index
tag2i[itag-1] = i; // tag is probably 1-based
tag2type[itag-1] = type_mapper[itype];
pos[itag-1][0] = x[i][0];
pos[itag-1][1] = x[i][1];
pos[itag-1][2] = x[i][2];
}
// Get cell
cell[0][0] = domain->boxhi[0] - domain->boxlo[0];
cell[1][0] = domain->xy;
cell[1][1] = domain->boxhi[1] - domain->boxlo[1];
cell[2][0] = domain->xz;
cell[2][1] = domain->yz;
cell[2][2] = domain->boxhi[2] - domain->boxlo[2];
/*
std::cout << "cell: " << cell_tensor << "\n";
std::cout << "tag2i: " << "\n";
for(int itag = 0; itag < inum; itag++){
std::cout << tag2i[itag] << " ";
}
std::cout << std::endl;
*/
auto cell_inv = cell_tensor.inverse().transpose(0,1);
// Loop over atoms and neighbors,
// store edges and _cell_shifts
// ii follows the order of the neighbor lists,
// i follows the order of x, f, etc.
int edge_counter = 0;
if (debug_mode) printf("NEQUIP edges: i j xi[:] xj[:] cell_shift[:] rij\n");
for(int ii = 0; ii < nlocal; ii++){
int i = ilist[ii];
int itag = tag[i];
int itype = type[i];
int jnum = numneigh[i];
int *jlist = firstneigh[i];
for(int jj = 0; jj < jnum; jj++){
int j = jlist[jj];
j &= NEIGHMASK;
int jtag = tag[j];
int jtype = type[j];
// TODO: check sign
periodic_shift[0] = x[j][0] - pos[jtag-1][0];
periodic_shift[1] = x[j][1] - pos[jtag-1][1];
periodic_shift[2] = x[j][2] - pos[jtag-1][2];
double dx = x[i][0] - x[j][0];
double dy = x[i][1] - x[j][1];
double dz = x[i][2] - x[j][2];
double rsq = dx*dx + dy*dy + dz*dz;
if (rsq < cutoff*cutoff){
torch::Tensor cell_shift_tensor = cell_inv.matmul(periodic_shift_tensor);
auto cell_shift = cell_shift_tensor.accessor<float, 1>();
float * e_vec = &edge_cell_shifts[edge_counter*3];
e_vec[0] = std::round(cell_shift[0]);
e_vec[1] = std::round(cell_shift[1]);
e_vec[2] = std::round(cell_shift[2]);
//std::cout << "cell shift: " << cell_shift_tensor << "\n";
// TODO: double check order
edges[edge_counter*2] = itag - 1; // tag is probably 1-based
edges[edge_counter*2+1] = jtag - 1; // tag is probably 1-based
edge_counter++;
if (debug_mode){
printf("%d %d %.10g %.10g %.10g %.10g %.10g %.10g %.10g %.10g %.10g %.10g\n", itag-1, jtag-1,
pos[itag-1][0],pos[itag-1][1],pos[itag-1][2],pos[jtag-1][0],pos[jtag-1][1],pos[jtag-1][2],
e_vec[0],e_vec[1],e_vec[2],sqrt(rsq));
}
}
}
}
if (debug_mode) printf("end NEQUIP edges\n");
// shorten the list before sending to nequip
torch::Tensor edges_tensor = torch::zeros({2,edge_counter}, torch::TensorOptions().dtype(torch::kInt64));
torch::Tensor edge_cell_shifts_tensor = torch::zeros({edge_counter,3});
auto new_edges = edges_tensor.accessor<long, 2>();
auto new_edge_cell_shifts = edge_cell_shifts_tensor.accessor<float, 2>();
for (int i=0; i<edge_counter; i++){
long *e=&edges[i*2];
new_edges[0][i] = e[0];
new_edges[1][i] = e[1];
float *ev = &edge_cell_shifts[i*3];
new_edge_cell_shifts[i][0] = ev[0];
new_edge_cell_shifts[i][1] = ev[1];
new_edge_cell_shifts[i][2] = ev[2];
}
c10::Dict<std::string, torch::Tensor> input;
input.insert("pos", pos_tensor.to(device));
input.insert("edge_index", edges_tensor.to(device));
input.insert("edge_cell_shift", edge_cell_shifts_tensor.to(device));
input.insert("cell", cell_tensor.to(device));
input.insert("atom_types", tag2type_tensor.to(device));
std::vector<torch::IValue> input_vector(1, input);
if(debug_mode){
std::cout << "NequIP model input:\n";
std::cout << "pos:\n" << pos_tensor << "\n";
std::cout << "edge_index:\n" << edges_tensor << "\n";
std::cout << "edge_cell_shifts:\n" << edge_cell_shifts_tensor << "\n";
std::cout << "cell:\n" << cell_tensor << "\n";
std::cout << "atom_types:\n" << tag2type_tensor << "\n";
}
auto output = model.forward(input_vector).toGenericDict();
torch::Tensor forces_tensor = output.at("forces").toTensor().cpu();
auto forces = forces_tensor.accessor<float, 2>();
torch::Tensor total_energy_tensor = output.at("total_energy").toTensor().cpu();
// store the total energy where LAMMPS wants it
eng_vdwl = total_energy_tensor.data_ptr<float>()[0];
torch::Tensor atomic_energy_tensor = output.at("atomic_energy").toTensor().cpu();
auto atomic_energies = atomic_energy_tensor.accessor<float, 2>();
float atomic_energy_sum = atomic_energy_tensor.sum().data_ptr<float>()[0];
if(debug_mode){
std::cout << "NequIP model output:\n";
std::cout << "forces: " << forces_tensor << "\n";
std::cout << "total_energy: " << total_energy_tensor << "\n";
std::cout << "atomic_energy: " << atomic_energy_tensor << "\n";
}
//std::cout << "atomic energy sum: " << atomic_energy_sum << std::endl;
//std::cout << "Total energy: " << total_energy_tensor << "\n";
//std::cout << "atomic energy shape: " << atomic_energy_tensor.sizes()[0] << "," << atomic_energy_tensor.sizes()[1] << std::endl;
//std::cout << "atomic energies: " << atomic_energy_tensor << std::endl;
// Write forces and per-atom energies (0-based tags here)
for(int itag = 0; itag < inum; itag++){
int i = tag2i[itag];
f[i][0] = forces[itag][0];
f[i][1] = forces[itag][1];
f[i][2] = forces[itag][2];
if (eflag_atom) eatom[i] = atomic_energies[itag][0];
//printf("%d %d %g %g %g %g %g %g\n", i, type[i], pos[itag][0], pos[itag][1], pos[itag][2], f[i][0], f[i][1], f[i][2]);
}
// TODO: Virial stuff? (If there even is a pairwise force concept here)
// TODO: Performance: Depending on how the graph network works, using tags for edges may lead to shitty memory access patterns and performance.
// It may be better to first create tag2i as a separate loop, then set edges[edge_counter][:] = (i, tag2i[jtag]).
// Then use forces(i,0) instead of forces(itag,0).
// Or just sort the edges somehow.
/*
if(device.is_cuda()){
//torch::cuda::empty_cache();
c10::cuda::CUDACachingAllocator::emptyCache();
}
*/
}