-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpair_allegro.cpp
460 lines (384 loc) · 14.9 KB
/
pair_allegro.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://lammps.sandia.gov/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Anders Johansson (Harvard)
------------------------------------------------------------------------- */
#include <pair_allegro.h>
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "neighbor.h"
#include "potential_file_reader.h"
#include "tokenizer.h"
#include <algorithm>
#include <vector>
#include <cmath>
#include <cstring>
#include <numeric>
#include <cassert>
#include <iostream>
#include <sstream>
#include <string>
#include <torch/torch.h>
#include <torch/script.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
// TODO: Only if MPI is available
#include <mpi.h>
// We have to do a backward compatability hack for <1.10
// https://discuss.pytorch.org/t/how-to-check-libtorch-version/77709/4
// Basically, the check in torch::jit::freeze
// (see https://github.com/pytorch/pytorch/blob/dfbd030854359207cb3040b864614affeace11ce/torch/csrc/jit/api/module.cpp#L479)
// is wrong, and we have ro "reimplement" the function
// to get around that...
// it's broken in 1.8 and 1.9
// BUT the internal logic in the function is wrong in 1.10
// So we only use torch::jit::freeze in >=1.11
#if (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR <= 10)
#define DO_TORCH_FREEZE_HACK
// For the hack, need more headers:
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/frozen_ops_to_mkldnn.h>
#endif
using namespace LAMMPS_NS;
PairAllegro::PairAllegro(LAMMPS *lmp) : Pair(lmp) {
restartinfo = 0;
manybody_flag = 1;
if(const char* env_p = std::getenv("ALLEGRO_DEBUG")){
std::cout << "PairAllegro is in DEBUG mode, since ALLEGRO_DEBUG is in env\n";
debug_mode = 1;
}
if(torch::cuda::is_available()){
int deviceidx = -1;
if(comm->nprocs > 1){
MPI_Comm shmcomm;
MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0,
MPI_INFO_NULL, &shmcomm);
int shmrank;
MPI_Comm_rank(shmcomm, &shmrank);
deviceidx = shmrank;
}
if(deviceidx >= 0) {
int devicecount = torch::cuda::device_count();
if(deviceidx >= devicecount) {
if(debug_mode) {
// To allow testing multi-rank calls, we need to support multiple ranks with one GPU
std::cerr << "WARNING (Allegro): my rank (" << deviceidx << ") is bigger than the number of visible devices (" << devicecount << "), wrapping around to use device " << deviceidx % devicecount << " again!!!";
deviceidx = deviceidx % devicecount;
}
else {
// Otherwise, more ranks than GPUs is an error
std::cerr << "ERROR (Allegro): my rank (" << deviceidx << ") is bigger than the number of visible devices (" << devicecount << ")!!!";
error->all(FLERR,"pair_allegro: mismatch between number of ranks and number of available GPUs");
}
}
}
device = c10::Device(torch::kCUDA,deviceidx);
}
else {
device = torch::kCPU;
}
std::cout << "Allegro is using device " << device << "\n";
}
PairAllegro::~PairAllegro(){
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
}
}
void PairAllegro::init_style(){
if (atom->tag_enable == 0)
error->all(FLERR,"Pair style Allegro requires atom IDs");
// need a full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->ghost = 1;
if (force->newton_pair == 0)
error->all(FLERR,"Pair style Allegro requires newton pair on");
}
double PairAllegro::init_one(int i, int j)
{
return cutoff;
}
void PairAllegro::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
memory->create(cutsq,n+1,n+1,"pair:cutsq");
}
void PairAllegro::settings(int narg, char ** /*arg*/) {
// "allegro" should be the only word after "pair_style" in the input file.
if (narg > 0)
error->all(FLERR, "Illegal pair_style command, too many arguments");
}
void PairAllegro::coeff(int narg, char **arg) {
if (!allocated)
allocate();
int ntypes = atom->ntypes;
// Should be exactly 3 arguments following "pair_coeff" in the input file.
if (narg != (3+ntypes))
error->all(FLERR, "Incorrect args for pair coefficients, should be * * <model>.pth <type1> <type2> ... <typen>");
// Ensure I,J args are "* *".
if (strcmp(arg[0], "*") != 0 || strcmp(arg[1], "*") != 0)
error->all(FLERR, "Incorrect args for pair coefficients");
for (int i = 1; i <= ntypes; i++)
for (int j = i; j <= ntypes; j++)
setflag[i][j] = 0;
std::vector<std::string> elements(ntypes);
for(int i = 0; i < ntypes; i++){
elements[i] = arg[i+1];
}
std::cout << "Allegro: Loading model from " << arg[2] << "\n";
std::unordered_map<std::string, std::string> metadata = {
{"config", ""},
{"nequip_version", ""},
{"r_max", ""},
{"n_species", ""},
{"type_names", ""},
{"_jit_bailout_depth", ""},
{"_jit_fusion_strategy", ""},
{"allow_tf32", ""}
};
model = torch::jit::load(std::string(arg[2]), device, metadata);
model.eval();
// Check if model is a NequIP model
if (metadata["nequip_version"].empty()) {
error->all(FLERR, "The indicated TorchScript file does not appear to be a deployed NequIP model; did you forget to run `nequip-deploy`?");
}
// If the model is not already frozen, we should freeze it:
// This is the check used by PyTorch: https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/api/module.cpp#L476
if (model.hasattr("training")) {
std::cout << "Allegro: Freezing TorchScript model...\n";
#ifdef DO_TORCH_FREEZE_HACK
// Do the hack
// Copied from the implementation of torch::jit::freeze,
// except without the broken check
// See https://github.com/pytorch/pytorch/blob/dfbd030854359207cb3040b864614affeace11ce/torch/csrc/jit/api/module.cpp
bool optimize_numerics = true; // the default
// the {} is preserved_attrs
auto out_mod = freeze_module(
model, {}
);
// See 1.11 bugfix in https://github.com/pytorch/pytorch/pull/71436
auto graph = out_mod.get_method("forward").graph();
OptimizeFrozenGraph(graph, optimize_numerics);
model = out_mod;
#else
// Do it normally
model = torch::jit::freeze(model);
#endif
}
#if (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR <= 10)
// Set JIT bailout to avoid long recompilations for many steps
size_t jit_bailout_depth;
if (metadata["_jit_bailout_depth"].empty()) {
// This is the default used in the Python code
jit_bailout_depth = 2;
} else {
jit_bailout_depth = std::stoi(metadata["_jit_bailout_depth"]);
}
torch::jit::getBailoutDepth() = jit_bailout_depth;
#else
// In PyTorch >=1.11, this is now set_fusion_strategy
torch::jit::FusionStrategy strategy;
if (metadata["_jit_fusion_strategy"].empty()) {
// This is the default used in the Python code
strategy = {{torch::jit::FusionBehavior::DYNAMIC, 3}};
} else {
std::stringstream strat_stream(metadata["_jit_fusion_strategy"]);
std::string fusion_type, fusion_depth;
while(std::getline(strat_stream, fusion_type, ',')) {
std::getline(strat_stream, fusion_depth, ';');
strategy.push_back({fusion_type == "STATIC" ? torch::jit::FusionBehavior::STATIC : torch::jit::FusionBehavior::DYNAMIC, std::stoi(fusion_depth)});
}
}
torch::jit::setFusionStrategy(strategy);
#endif
// Set whether to allow TF32:
bool allow_tf32;
if (metadata["allow_tf32"].empty()) {
// Better safe than sorry
allow_tf32 = false;
} else {
// It gets saved as an int 0/1
allow_tf32 = std::stoi(metadata["allow_tf32"]);
}
// See https://pytorch.org/docs/stable/notes/cuda.html
at::globalContext().setAllowTF32CuBLAS(allow_tf32);
at::globalContext().setAllowTF32CuDNN(allow_tf32);
// std::cout << "Allegro: Information from model: " << metadata.size() << " key-value pairs\n";
// for( const auto& n : metadata ) {
// std::cout << "Key:[" << n.first << "] Value:[" << n.second << "]\n";
// }
cutoff = std::stod(metadata["r_max"]);
//TODO: This
type_mapper.resize(ntypes);
std::stringstream ss;
int n_species = std::stod(metadata["n_species"]);
ss << metadata["type_names"];
std::cout << "Type mapping:" << "\n";
std::cout << "Allegro type | Allegro name | LAMMPS type | LAMMPS name" << "\n";
for (int i = 0; i < n_species; i++){
std::string ele;
ss >> ele;
for (int itype = 1; itype <= ntypes; itype++){
if (ele.compare(arg[itype + 3 - 1]) == 0){
type_mapper[itype-1] = i;
std::cout << i << " | " << ele << " | " << itype << " | " << arg[itype + 3 - 1] << "\n";
}
}
}
// set setflag i,j for type pairs where both are mapped to elements
for (int i = 1; i <= ntypes; i++)
for (int j = i; j <= ntypes; j++)
if ((type_mapper[i] >= 0) && (type_mapper[j] >= 0))
setflag[i][j] = 1;
char *batchstr = std::getenv("BATCHSIZE");
if (batchstr != NULL) {
batch_size = std::atoi(batchstr);
}
}
// Force and energy computation
void PairAllegro::compute(int eflag, int vflag){
ev_init(eflag, vflag);
// Get info from lammps:
// Atom positions, including ghost atoms
double **x = atom->x;
// Atom forces
double **f = atom->f;
// Atom IDs, unique, reproducible, the "real" indices
// Probably 1-based
tagint *tag = atom->tag;
// Atom types, 1-based
int *type = atom->type;
// Number of local/real atoms
int nlocal = atom->nlocal;
// Whether Newton is on (i.e. reverse "communication" of forces on ghost atoms).
// Should be on.
int newton_pair = force->newton_pair;
// Number of local/real atoms
int inum = list->inum;
assert(inum==nlocal); // This should be true, if my understanding is correct
// Number of ghost atoms
int nghost = list->gnum;
// Total number of atoms
int ntotal = inum + nghost;
// Mapping from neigh list ordering to x/f ordering
int *ilist = list->ilist;
// Number of neighbors per atom
int *numneigh = list->numneigh;
// Neighbor list per atom
int **firstneigh = list->firstneigh;
// Total number of bonds (sum of number of neighbors)
int nedges = 0;
// Number of bonds per atom
std::vector<int> neigh_per_atom(nlocal, 0);
#pragma omp parallel for reduction(+:nedges)
for(int ii = 0; ii < nlocal; ii++){
int i = ilist[ii];
int jnum = numneigh[i];
int *jlist = firstneigh[i];
for(int jj = 0; jj < jnum; jj++){
int j = jlist[jj];
j &= NEIGHMASK;
double dx = x[i][0] - x[j][0];
double dy = x[i][1] - x[j][1];
double dz = x[i][2] - x[j][2];
double rsq = dx*dx + dy*dy + dz*dz;
if(rsq <= cutoff*cutoff) {
neigh_per_atom[ii]++;
nedges++;
}
}
}
// Cumulative sum of neighbors, for knowing where to fill in the edges tensor
std::vector<int> cumsum_neigh_per_atom(nlocal);
for(int ii = 1; ii < nlocal; ii++){
cumsum_neigh_per_atom[ii] = cumsum_neigh_per_atom[ii-1] + neigh_per_atom[ii-1];
}
torch::Tensor pos_tensor = torch::zeros({ntotal, 3});
torch::Tensor edges_tensor = torch::zeros({2,nedges}, torch::TensorOptions().dtype(torch::kInt64));
torch::Tensor ij2type_tensor = torch::zeros({ntotal}, torch::TensorOptions().dtype(torch::kInt64));
auto pos = pos_tensor.accessor<float, 2>();
auto edges = edges_tensor.accessor<long, 2>();
auto ij2type = ij2type_tensor.accessor<long, 1>();
// Loop over atoms and neighbors,
// store edges and _cell_shifts
// ii follows the order of the neighbor lists,
// i follows the order of x, f, etc.
if (debug_mode) printf("Allegro edges: i j rij\n");
#pragma omp parallel for
for(int ii = 0; ii < ntotal; ii++){
int i = ilist[ii];
int itag = tag[i];
int itype = type[i];
ij2type[i] = type_mapper[itype - 1];
pos[i][0] = x[i][0];
pos[i][1] = x[i][1];
pos[i][2] = x[i][2];
if(ii >= nlocal){continue;}
int jnum = numneigh[i];
int *jlist = firstneigh[i];
int edge_counter = cumsum_neigh_per_atom[ii];
for(int jj = 0; jj < jnum; jj++){
int j = jlist[jj];
j &= NEIGHMASK;
int jtag = tag[j];
int jtype = type[j];
double dx = x[i][0] - x[j][0];
double dy = x[i][1] - x[j][1];
double dz = x[i][2] - x[j][2];
double rsq = dx*dx + dy*dy + dz*dz;
if(rsq > cutoff*cutoff) {continue;}
// TODO: double check order
edges[0][edge_counter] = i;
edges[1][edge_counter] = j;
edge_counter++;
if (debug_mode) printf("%d %d %.10g\n", itag-1, jtag-1, sqrt(rsq));
}
}
if (debug_mode) printf("end Allegro edges\n");
c10::Dict<std::string, torch::Tensor> input;
input.insert("pos", pos_tensor.to(device));
input.insert("edge_index", edges_tensor.to(device));
input.insert("atom_types", ij2type_tensor.to(device));
std::vector<torch::IValue> input_vector(1, input);
auto output = model.forward(input_vector).toGenericDict();
torch::Tensor forces_tensor = output.at("forces").toTensor().cpu();
auto forces = forces_tensor.accessor<float, 2>();
//torch::Tensor total_energy_tensor = output.at("total_energy").toTensor().cpu(); WRONG WITH MPI
torch::Tensor atomic_energy_tensor = output.at("atomic_energy").toTensor().cpu();
auto atomic_energies = atomic_energy_tensor.accessor<float, 2>();
float atomic_energy_sum = atomic_energy_tensor.sum().data_ptr<float>()[0];
//std::cout << "atomic energy sum: " << atomic_energy_sum << std::endl;
//std::cout << "Total energy: " << total_energy_tensor << "\n";
//std::cout << "atomic energy shape: " << atomic_energy_tensor.sizes()[0] << "," << atomic_energy_tensor.sizes()[1] << std::endl;
//std::cout << "atomic energies: " << atomic_energy_tensor << std::endl;
// Write forces and per-atom energies (0-based tags here)
eng_vdwl = 0.0;
#pragma omp parallel for reduction(+:eng_vdwl)
for(int ii = 0; ii < ntotal; ii++){
int i = ilist[ii];
f[i][0] = forces[i][0];
f[i][1] = forces[i][1];
f[i][2] = forces[i][2];
if (eflag_atom && ii < inum) eatom[i] = atomic_energies[i][0];
if(ii < inum) eng_vdwl += atomic_energies[i][0];
}
}