Skip to content

Latest commit

 

History

History
114 lines (79 loc) · 3.23 KB

house_sales_tutorial_test.mdx

File metadata and controls

114 lines (79 loc) · 3.23 KB

Testing: House Sales Tutorial

  1. Testing CREATE DATABASE
CREATE DATABASE example_db
    WITH ENGINE = "postgres",
    PARAMETERS = {
        "user": "demo_user",
        "password": "demo_password",
        "host": "3.220.66.106",
        "port": "5432",
        "database": "demo"
};

Output:

status
Query successfully completed
  1. Testing Preview the Available Data Using SELECT
SELECT *
FROM example_db.demo_data.house_sales
LIMIT 10;

output

saledate ma type bedrooms
2007-09-30 441854 house 2
2007-12-31 441854 house 2
2008-03-31 441854 house 2
2008-06-30 441854 house 2
2008-09-30 451583 house 2
2008-12-31 440256 house 2
2009-03-31 442566 house 2
2009-06-30 446113 house 2
2009-09-30 440123 house 2
2009-12-31 442131 house 2
  1. Create a Model Using CREATE MODEL
CREATE MODEL mindsdb.house_sales_predictor
FROM files
  (SELECT * FROM house_sales)
PREDICT MA
ORDER BY saledate
GROUP BY bedrooms, type
-- the target column to be predicted stores one row per quarter
WINDOW 8     
HORIZON 4;

output

NAME ENGINE PROJECT ACTIVE VERSION STATUS ACCURACY PREDICT UPDATE_STATUS MINDSDB_VERSION ERROR SELECT_DATA_QUERY TRAINING_OPTIONS TAG
house_sales_predictor lightwood mindsdb true 1 generating [NULL] MA up_to_date 23.5.3.2 [NULL] SELECT * FROM house_sales {'target': 'MA', 'timeseries_settings': {'is_timeseries': True, 'order_by': 'saledate', 'horizon': 4, 'window': 8, 'group_by': ['bedrooms', 'type']}} [NULL]
  1. Testing Check the Status of a Model Using SELECT
SELECT status
FROM mindsdb.models
WHERE name='house_sales_predictor';

output

status
complete
  1. Testing Make Predictions Using SELECT
SELECT m.saledate AS date, m.MA AS forecast, MA_explain
FROM mindsdb.house_sales_predictor AS m
JOIN files.house_sales AS t
WHERE t.saledate > LATEST
AND t.type = 'house'
AND t.bedrooms = 2
LIMIT 4;

output

date forecast MA_explain
2019-12-31 00:00:00.000000 455704.5416666667 {"predicted_value": 455704.5416666667, "confidence": 0.9991, "anomaly": false, "truth": null, "confidence_lower_bound": 451048.64631782944, "confidence_upper_bound": 460360.43701550394}
2020-04-01 00:00:00.000000 457982.5416666666 {"predicted_value": 457982.5416666666, "confidence": 0.9991, "anomaly": null, "truth": null, "confidence_lower_bound": 453043.843992248, "confidence_upper_bound": 462921.23934108525}
2020-07-02 00:00:00.000000 471354.5416666667 {"predicted_value": 471354.5416666667, "confidence": 0.9991, "anomaly": null, "truth": null, "confidence_lower_bound": 453450.75096899224, "confidence_upper_bound": 489258.3323643411}
2020-10-02 00:00:00.000000 474160.5416666667 {"predicted_value": 474160.5416666667, "confidence": 0.9991, "anomaly": null, "truth": null, "confidence_lower_bound": 452460.9486434109, "confidence_upper_bound": 495860.13468992244}