-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunicon.py
249 lines (238 loc) · 9.64 KB
/
unicon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math
import types
import numpy as np
from scipy.optimize import curve_fit
from g_mix import *
def initialization(p_ref = 1e6/2.43e10*1e-3*2):
global Elements, Gas_species_list, Monoatom_dict, Potential_solid_species_list, \
Existing_solid_species_list, Solid_species_dict,Endmember_dict, Potential_solid_solution_species_list, \
Existing_solid_solution_species_list, Solid_solution_species_dict, Isolation_dict
global T
Elements = {}
Gas_species_list = []
Monoatom_dict = {}
Potential_solid_species_list = []
Existing_solid_species_list = []
Potential_solid_solution_species_list = []
Existing_solid_solution_species_list = []
Solid_species_dict = {}
Solid_solution_species_dict = {}
Endmember_dict = {}
isolation_dict = {}
global solid_p_ref
solid_p_ref = p_ref ## arbitrary set as the Si pressure
class Element():
def __init__(self, name, pressure,solar_abundance):
self.name = name
self.p_tot = pressure
self.abundance = solar_abundance
self.gas_species_list = []
#gas_species_list appends the tuple (species, # of atoms)
self.solid_species_dict = {}
self.solid_solution_species_dict = {}
#the reason to use dict is that we can easily delete it
Elements[name] = self
def add_species(self, species):
self.species_list.append(species)
def mass_balance(self):
total = 0
for species in self.gas_species_list:
total += species[0].pressure * species[1]
# print(species[0].name, species[0].pressure, species[1]*species[0].pressure/self.p_tot)
for species, atom_num in self.solid_species_dict.items():
total += species.pressure * atom_num
for species, atom_array in self.solid_solution_species_dict.items():
total += np.sum(species.pressure * species.X * atom_array)
return self.p_tot - total
class Monoatom_species():
## this is the mono-atomic gas in the system
def __init__(self, name, G_vs_T, transition_temp = -1):
assert type(G_vs_T) is np.ndarray
self.log_pressure = 0
self.pressure = 0
self.name = name
self.formula = {name: 1}
self.transition_temp = transition_temp
if transition_temp == -1:
self.para,_ = curve_fit(Gibbs_energy_fit, G_vs_T[:,0],G_vs_T[:,1])
else:
self.G_vs_T = G_vs_T
Monoatom_dict[name] = self
Elements[name].gas_species_list.append((self, 1))
def G(self):
if self.transition_temp == -1:
return Gibbs_energy_fit(T, *self.para)
if self.transition_temp > 0:
return np.interp(T, self.G_vs_T[:,0], self.G_vs_T[:,1])
def update_log_pressure(self, log_pressure):
self.log_pressure = log_pressure
self.pressure = math.exp(log_pressure)
def update_pressure(self, pressure):
self.log_pressure = math.log(pressure)
self.pressure = pressure
class Gas_species():
def __init__(self, name, formula,G_vs_T, transition_temp = -1):
assert type(G_vs_T) is np.ndarray
assert type(formula) is dict
# self.log_pressure = 0
self.pressure = 0
self.name = name
self.formula = formula
self.transition_temp = transition_temp
if transition_temp == -1:
self.para,_ = curve_fit(Gibbs_energy_fit, G_vs_T[:,0],G_vs_T[:,1])
else:
self.G_vs_T = G_vs_T
Gas_species_list.append(self)
for key, value in self.formula.items():
Elements[key].gas_species_list.append((self, value))
def G(self):
if self.transition_temp == -1:
return Gibbs_energy_fit(T, *self.para)
if self.transition_temp > 0:
return np.interp(T, self.G_vs_T[:,0], self.G_vs_T[:,1])
def update_pressure(self):
log_p = 0
log_K = -self.G()
for key, value in self.formula.items():
# key is the element name and value is the number
log_p += value * Monoatom_dict[key].log_pressure
log_K += value * Monoatom_dict[key].G()
log_K = log_K*1e3/(8.314*T)
self.pressure = math.exp(log_K + log_p)
class Solid_species():
def __init__(self, name, formula, G_vs_T, transition_temp = -1):
assert type(G_vs_T) is np.ndarray
assert type(formula) is dict
self.pressure = 0
self.name = name
self.formula = formula
self.transition_temp = transition_temp
# p_max = [Elements[name].p_tot for name in formula.keys()]
# self.p_ref = np.min(p_max)
self.p_ref = solid_p_ref
self.f_pressure = 0 # pressure = f_pressure * p_max
if transition_temp == -1:
self.para,_ = curve_fit(Gibbs_energy_fit, G_vs_T[:,0],G_vs_T[:,1])
else:
self.G_vs_T = G_vs_T
Potential_solid_species_list.append(self)
Solid_species_dict[name] = self
def G(self):
if self.transition_temp == -1:
return Gibbs_energy_fit(T, *self.para)
if self.transition_temp > 0:
return np.interp(T, self.G_vs_T[:,0], self.G_vs_T[:,1])
def equilibrium(self):
log_p = 0
log_K = -self.G()
for key, value in self.formula.items():
# key is the element name and value is the number
log_p += value * Monoatom_dict[key].log_pressure
log_K += value * Monoatom_dict[key].G()
log_K = log_K*1e3/(8.314*T)
return log_K + log_p
def update_f_pressure(self, fp):
self.f_pressure = fp
self.pressure = fp * self.p_ref
class Endmember_species():
def __init__(self, name, formula, G_vs_T, transition_temp = -1):
assert type(G_vs_T) is np.ndarray
assert type(formula) is dict
self.pressure = 0
self.name = name
self.formula = formula
self.transition_temp = transition_temp
if transition_temp == -1:
self.para,_ = curve_fit(Gibbs_energy_fit, G_vs_T[:,0],G_vs_T[:,1])
else:
self.G_vs_T = G_vs_T
Endmember_dict[name] = self
def G(self):
if self.transition_temp == -1:
return Gibbs_energy_fit(T, *self.para)
if self.transition_temp > 0:
return np.interp(T, self.G_vs_T[:,0], self.G_vs_T[:,1])
def equilibrium(self):
log_p = 0
G = -self.G()
for key, value in self.formula.items():
# key is the element name and value is the number
log_p += value * Monoatom_dict[key].log_pressure
G += value * Monoatom_dict[key].G()
G = G*1e3
return G + log_p*8.314*T
class solid_solution_species():
def __init__(self, name, endmember, solution_type, **kwargs):
assert type(endmember) is dict
self.name = name
self.pressure = 0
self.f_pressure = 0
self.X = np.array(list(endmember.values()))
self.endmember = endmember
for num, key in enumerate(self.endmember.keys()):
self.endmember[key] = num
if "p_ref" in kwargs:
self.p_ref = Elements[kwargs["p_ref"]].p_tot
else:
self.p_ref = solid_p_ref
if solution_type == "ideal solution":
solution_type = 1
elif solution_type == "regular solution":
solution_type = 2
elif solution_type == "custom":
solution_type = 3
if solution_type == 1:
self.G_mix = ideal_solution_G_mix
self.G_mix_prime = ideal_solution_G_mix_prime
elif solution_type == 2:
self.W = kwargs["W"]
elif solution_type == 3:
assert type(kwargs["G_mix"]), type(kwargs["G_mix_prime"]) is types.FunctionType
## The G_mix should return an array or number
self.G_mix = kwargs["G_mix"]
self.G_mix_prime = kwargs["G_mix_prime"]
self.solution_type = solution_type
Potential_solid_solution_species_list.append(self)
Solid_solution_species_dict[name] = self
def G(self):
G = 0
for key, pos in self.endmember.items():
G += Endmember_dict[key].G(T)* self.X[pos]
G += self.G_mix(self.X, T)
return G
def update_f_pressure(self, fp):
self.f_pressure = fp
self.pressure = fp * self.p_ref
def update_X(self, X):
assert len(X) == len(self.endmember)
if np.abs(np.sum(X) - 1) >= 1e-6:
X = X/np.sum(X)
self.X = X
def update_bounded_X(self, X):
assert len(X) == len(self.endmember) - 1, "the bounded X should have dim of N - 1"
tot_X = np.sum(X)
X = np.append(X, 1 - tot_X)
self.X = X
def equilibrium(self):
eqn = 0
#eqn = [G0-i - sum(G0_gas_i) - RT*sum(log_p_gas_i)] - [G0-n - sum(G0_gas_n) - RT*sum(log_p_gas_n)] + dG_mix/dX
for num, key in enumerate(self.endmember.keys()):
eqn -= Endmember_dict[key].equilibrium() * self.X[num]
eqn += self.G_mix(self.X, T)
return eqn
def equilibrium_prime(self):
eqn = np.zeros(len(self.endmember) - 1)
#eqn = [G0-i - sum(G0_gas_i) - RT*sum(log_p_gas_i)] - [G0-n - sum(G0_gas_n) - RT*sum(log_p_gas_n)] + dG_mix/dX
keys = list(self.endmember.keys())
for num, key in enumerate(keys[:-1]):
eqn[num] = Endmember_dict[keys[-1]].equilibrium() \
- Endmember_dict[key].equilibrium()
eqn += self.G_mix_prime(self.X, T)
return eqn
def _equilibrium(self, bounded_X):
self.update_bounded_X(bounded_X)
return self.equilibrium()
def _equilibrium_prime(self, bounded_X):
self.update_bounded_X(bounded_X)
return self.equilibrium_prime()