-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathmtwi2018.py
65 lines (51 loc) · 2.84 KB
/
mtwi2018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import glob
import json
import os
import cv2
from tqdm import tqdm
from mindocr.data.utils.polygon_utils import sort_clockwise
class MTWI2018_Converter(object):
"""
Format annotation to standard form for MTWI2018 dataset.
The ground truth is provided in terms of word bounding boxes. Bounding boxes are specified by the coordinates of
their four corners in a clock-wise manner. For each image a corresponding UTF-8 encoded text file is provided,
following the naming convention:
`[image name].txt`
The text files are comma separated files, where each line corresponds to one text block in the image and gives
its bounding box coordinates (four corners, clockwise) and its transcription in the format:
`x1,y1,x2,y2,x3,y3,x4,y4,transcription`
Note that the transcription is anything that follows the 8th comma until the end of line. No escape characters are
to be used.
If the transcription is provided as "###", then text block (word) is considered as "don't care".
"""
def __init__(self, path_mode="relative", **kwargs):
self.path_mode = path_mode
def convert(self, task="det", image_dir=None, label_path=None, output_path=None):
self.label_path = label_path
assert os.path.exists(label_path), f"{label_path} no exist!"
if task == "det":
self._format_det_label(image_dir, self.label_path, output_path)
else:
raise ValueError("MTWI2018 currently only support detection.")
def _format_det_label(self, image_dir, label_dir, output_path):
label_paths = sorted(glob.glob(os.path.join(label_dir, "*.txt")))
with open(output_path, "w") as out_file:
for label_fp in tqdm(label_paths):
label_file_name = os.path.basename(label_fp)
img_path = os.path.join(image_dir, label_file_name.split(".txt")[0] + ".jpg")
assert os.path.exists(
img_path
), f"{img_path} not exist! Please check the input image_dir {image_dir} and names in {label_fp}"
if cv2.imread(img_path) is None:
print(f"Failed to open {os.path.basename(img_path)} - skipping.")
continue
label = []
if self.path_mode == "relative":
img_path = os.path.basename(img_path)
with open(label_fp, "r", encoding="utf-8-sig") as f:
for line in f.readlines():
tmp = line.strip("\n\r").split(",", 8)
points = [[float(tmp[i]), float(tmp[i + 1])] for i in range(0, 8, 2)]
points = sort_clockwise(points).tolist()
label.append({"transcription": tmp[8], "points": points})
out_file.write(img_path + "\t" + json.dumps(label, ensure_ascii=False) + "\n")