-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path40_quality_visu.py
52 lines (39 loc) · 1.54 KB
/
40_quality_visu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
This script loads and visualizes MRI reconstruction results from multiple NumPy files.
The script will:
- Find all `.npy` files in the specified directory and its subdirectories.
- Print the number of files found and their dimensions.
- Display the contents of each file in a grid of subplots. If the data is 3-dimensional, the middle slice will be displayed.
"""
import numpy as np
import glob
import os
import matplotlib.pyplot as plt
# Directory where benchmark result files are stored
BENCHMARK_DIR = "./outputs-qual"
results_files = glob.glob(BENCHMARK_DIR + "/**/*.npy", recursive=True)
# Print the number of files found
num_files = len(results_files)
print(f"Nombre de fichiers trouvés: {num_files}")
# Determine grid size for plotting
grid_size = int(np.ceil(np.sqrt(num_files)))
fig, axs = plt.subplots(grid_size, grid_size, figsize=(15, 15))
# Load and display each file
for idx, file_path in enumerate(results_files):
data = np.load(file_path)
print(f"Dimensions des données pour {file_path}: {data.shape}")
ax = axs[idx // grid_size, idx % grid_size]
file_name = os.path.basename(file_path)
if data.ndim == 3:
mid_slice = data.shape[0] // 2
ax.imshow(data[mid_slice], cmap="gray")
ax.set_title(f"{file_name}\nSlice au milieu ({mid_slice})")
else:
ax.imshow(data, cmap="gray")
ax.set_title(file_name)
ax.axis("off")
# Remove empty subplots if any
for idx in range(num_files, grid_size * grid_size):
fig.delaxes(axs.flatten()[idx])
plt.tight_layout()
plt.show()