-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy path14-hypothesis.Rmd
467 lines (318 loc) · 13.3 KB
/
14-hypothesis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Hypothesis Testing
Error types:
- Type I Error (False Positive):
- Reality: nope
- Diagnosis/Analysis: yes
- Type II Error (False Negative):
- Reality: yes
- Diagnosis/Analysis: nope
Power: The probability of rejecting the null hypothesis when it is actually false
**Note:**
- Always written in terms of the population parameter ($\beta$) not the estimator/estimate ($\hat{\beta}$)
- Sometimes, different disciplines prefer to use $\beta$ (i.e., standardized coefficient), or $\mathbf{b}$ (i.e., unstandardized coefficient)
- $\beta$ and $\mathbf{b}$ are similar in interpretation; however, $\beta$ is scale free. Hence, you can see the relative contribution of $\beta$ to the dependent variable. On the other hand, $\mathbf{b}$ can be more easily used in policy decisions.
- $$
\beta_j = \mathbf{b} \frac{s_{x_j}}{s_y}
$$
- Assuming the null hypothesis is true, what is the (asymptotic) distribution of the estimator
- Two-sided
$$
\begin{aligned}
&H_0: \beta_j = 0 \\
&H_1: \beta_j \neq 0
\end{aligned}
$$
then under the null, the OLS estimator has the following distribution
$$
A1-A3a, A5: \sqrt{n} \hat{\beta_j} \sim N(0,Avar(\sqrt{n}\hat{\beta}_j))
$$
- For the one-sided test, the null is a set of values, so now you choose the worst case single value that is hardest to prove and derive the distribution under the null
- One-sided
$$
\begin{aligned}
&H_0: \beta_j\ge 0 \\
&H_1: \beta_j < 0
\end{aligned}
$$
then the hardest null value to prove is $H_0: \beta_j=0$. Then under this specific null, the OLS estimator has the following asymptotic distribution
$$
A1-A3a, A5: \sqrt{n}\hat{\beta_j} \sim N(0,Avar(\sqrt{n}\hat{\beta}_j))
$$
## Types of hypothesis testing
$H_0 : \theta = \theta_0$
$H_1 : \theta \neq \theta_0$
How far away / extreme $\theta$ can be if our null hypothesis is true
Assume that our likelihood function for q is $L(q) = q^{30}(1-q)^{70}$ **Likelihood function**
```{r}
q = seq(0, 1, length = 100)
L = function(q) {
q ^ 30 * (1 - q) ^ 70
}
plot(q,
L(q),
ylab = "L(q)",
xlab = "q",
type = "l")
```
**Log-Likelihood function**
```{r}
q = seq(0, 1, length = 100)
l = function(q) {
30 * log(q) + 70 * log(1 - q)
}
plot(q,
l(q) - l(0.3),
ylab = "l(q) - l(qhat)",
xlab = "q",
type = "l")
abline(v = 0.2)
```
![](images/nested_tests.jpg){style="display: block; margin: 1em auto" width="600" height="400"}
Figure from[@fox1997applied]
typically, [The likelihood ratio test] (and [Lagrange Multiplier (Score)](#lagrange-multiplier-score)) performs better with small to moderate sample sizes, but the [Wald test] only requires one maximization (under the full model).
## Wald test
$$
\begin{aligned}
W &= (\hat{\theta}-\theta_0)'[cov(\hat{\theta})]^{-1}(\hat{\theta}-\theta_0) \\
W &\sim \chi_q^2
\end{aligned}
$$
where $cov(\hat{\theta})$ is given by the inverse Fisher Information matrix evaluated at $\hat{\theta}$ and q is the rank of $cov(\hat{\theta})$, which is the number of non-redundant parameters in $\theta$
Alternatively,
$$
t_W=\frac{(\hat{\theta}-\theta_0)^2}{I(\theta_0)^{-1}} \sim \chi^2_{(v)}
$$
where v is the degree of freedom.
Equivalently,
$$
s_W= \frac{\hat{\theta}-\theta_0}{\sqrt{I(\hat{\theta})^{-1}}} \sim Z
$$
How far away in the distribution your sample estimate is from the hypothesized population parameter.
For a null value, what is the probability you would have obtained a realization "more extreme" or "worse" than the estimate you actually obtained?
Significance Level ($\alpha$) and Confidence Level ($1-\alpha$)
- The significance level is the benchmark in which the probability is so low that we would have to reject the null
- The confidence level is the probability that sets the bounds on how far away the realization of the estimator would have to be to reject the null.
**Test Statistics**
- Standardized (transform) the estimator and null value to a test statistic that always has the same distribution
- Test Statistic for the OLS estimator for a single hypothesis
$$
T = \frac{\sqrt{n}(\hat{\beta}_j-\beta_{j0})}{\sqrt{n}SE(\hat{\beta_j})} \sim^a N(0,1)
$$
Equivalently,
$$
T = \frac{(\hat{\beta}_j-\beta_{j0})}{SE(\hat{\beta_j})} \sim^a N(0,1)
$$
the test statistic is another random variable that is a function of the data and null hypothesis.
- T denotes the random variable test statistic
- t denotes the single realization of the test statistic
Evaluating Test Statistic: determine whether or not we reject or fail to reject the null hypothesis at a given significance / confidence level
Three equivalent ways
1. Critical Value
2. P-value
3. Confidence Interval
4. Critical Value
For a given significance level, will determine the critical value $(c)$
- One-sided: $H_0: \beta_j \ge \beta_{j0}$
$$
P(T<c|H_0)=\alpha
$$
Reject the null if $t<c$
- One-sided: $H_0: \beta_j \le \beta_{j0}$
$$
P(T>c|H_0)=\alpha
$$
Reject the null if $t>c$
- Two-sided: $H_0: \beta_j \neq \beta_{j0}$
$$
P(|T|>c|H_0)=\alpha
$$
Reject the null if $|t|>c$
2. p-value
Calculate the probability that the test statistic was worse than the realization you have
- One-sided: $H_0: \beta_j \ge \beta_{j0}$
$$
\text{p-value} = P(T<t|H_0)
$$
- One-sided: $H_0: \beta_j \le \beta_{j0}$
$$
\text{p-value} = P(T>t|H_0)
$$
- Two-sided: $H_0: \beta_j \neq \beta_{j0}$
$$
\text{p-value} = P(|T|<t|H_0)
$$
reject the null if p-value $< \alpha$
3. Confidence Interval
Using the critical value associated with a null hypothesis and significance level, create an interval
$$
CI(\hat{\beta}_j)_{\alpha} = [\hat{\beta}_j-(c \times SE(\hat{\beta}_j)),\hat{\beta}_j+(c \times SE(\hat{\beta}_j))]
$$
If the null set lies outside the interval then we reject the null.
- We are not testing whether the true population value is close to the estimate, we are testing that given a field true population value of the parameter, how like it is that we observed this estimate.
- Can be interpreted as we believe with $(1-\alpha)\times 100 \%$ probability that the confidence interval captures the true parameter value.
With stronger assumption (A1-A6), we could consider [Finite Sample Properties]
$$
T = \frac{\hat{\beta}_j-\beta_{j0}}{SE(\hat{\beta}_j)} \sim T(n-k)
$$
- This above distributional derivation is strongly dependent on [A4][A4 Homoskedasticity] and [A5][A5 Data Generation (random Sampling)]
- T has a student t-distribution because the numerator is normal and the denominator is $\chi^2$.
- Critical value and p-values will be calculated from the student t-distribution rather than the standard normal distribution.
- $n \to \infty$, $T(n-k)$ is asymptotically standard normal.
**Rule of thumb**
- if $n-k>120$: the critical values and p-values from the t-distribution are (almost) the same as the critical values and p-values from the standard normal distribution.
- if $n-k<120$
- if (A1-A6) hold then the t-test is an exact finite distribution test
- if (A1-A3a, A5) hold, because the t-distribution is asymptotically normal, computing the critical values from a t-distribution is still a valid asymptotic test (i.e., not quite the right critical values and p0values, the difference goes away as $n \to \infty$)
### Multiple Hypothesis
- test multiple parameters as the same time
- $H_0: \beta_1 = 0\ \& \ \beta_2 = 0$
- $H_0: \beta_1 = 1\ \& \ \beta_2 = 0$
- perform a series of simply hypothesis does not answer the question (joint distribution vs. two marginal distributions).
- The test statistic is based on a restriction written in matrix form.
$$
y=\beta_0+x_1\beta_1 + x_2\beta_2 + x_3\beta_3 + \epsilon
$$
Null hypothesis is $H_0: \beta_1 = 0$ & $\beta_2=0$ can be rewritten as $H_0: \mathbf{R}\beta -\mathbf{q}=0$ where
- $\mathbf{R}$ is a $m \times k$ matrix where m is the number of restrictions and $k$ is the number of parameters. $\mathbf{q}$ is a $k \times 1$ vector
- $\mathbf{R}$ "picks up" the relevant parameters while $\mathbf{q}$ is a the null value of the parameter
$$
\mathbf{R}=
\left(
\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{array}
\right),
\mathbf{q} =
\left(
\begin{array}{c}
0 \\
0 \\
\end{array}
\right)
$$
Test Statistic for OLS estimator for a multiple hypothesis
$$
F = \frac{(\mathbf{R\hat{\beta}-q})\hat{\Sigma}^{-1}(\mathbf{R\hat{\beta}-q})}{m} \sim^a F(m,n-k)
$$
- $\hat{\Sigma}^{-1}$ is the estimator for the asymptotic variance-covariance matrix
- if [A4][A4 Homoskedasticity] holds, both the homoskedastic and heteroskedastic versions produce valid estimator
- If [A4][A4 Homoskedasticity] does not hold, only the heteroskedastic version produces valid estimators.
- When $m = 1$, there is only a single restriction, then the $F$-statistic is the $t$-statistic squared.
- $F$ distribution is strictly positive, check [F-Distribution] for more details.
### Linear Combination
Testing multiple parameters as the same time
$$
\begin{aligned}
H_0&: \beta_1 -\beta_2 = 0 \\
H_0&: \beta_1 - \beta_2 > 0 \\
H_0&: \beta_1 - 2\times\beta_2 =0
\end{aligned}
$$
Each is a single restriction on a function of the parameters.
Null hypothesis:
$$
H_0: \beta_1 -\beta_2 = 0
$$
can be rewritten as
$$
H_0: \mathbf{R}\beta -\mathbf{q}=0
$$
where $\mathbf{R}$=(0 1 -1 0 0) and $\mathbf{q}=0$
### Estimate Difference in Coefficients
There is no package to estimate for the difference between two coefficients and its CI, but a simple function created by [Katherine Zee](https://kzee.github.io/CoeffDiff_Demo.html) can be used to calculate this difference. Some modifications might be needed if you don't use standard `lm` model in R.
```{r}
difftest_lm <- function(x1, x2, model) {
diffest <-
summary(model)$coef[x1, "Estimate"] - summary(model)$coef[x2, "Estimate"]
vardiff <- (summary(model)$coef[x1, "Std. Error"] ^ 2 +
summary(model)$coef[x2, "Std. Error"] ^ 2) - (2 * (vcov(model)[x1, x2]))
# variance of x1 + variance of x2 - 2*covariance of x1 and x2
diffse <- sqrt(vardiff)
tdiff <- (diffest) / (diffse)
ptdiff <- 2 * (1 - pt(abs(tdiff), model$df, lower.tail = T))
upr <-
# will usually be very close to 1.96
diffest + qt(.975, df = model$df) * diffse
lwr <- diffest + qt(.025, df = model$df) * diffse
df <- model$df
return(list(
est = round(diffest, digits = 2),
t = round(tdiff, digits = 2),
p = round(ptdiff, digits = 4),
lwr = round(lwr, digits = 2),
upr = round(upr, digits = 2),
df = df
))
}
```
### Application
```{r}
library("car")
# Multiple hypothesis
mod.davis <- lm(weight ~ repwt, data=Davis)
linearHypothesis(mod.davis, c("(Intercept) = 0", "repwt = 1"),white.adjust = TRUE)
# Linear Combination
mod.duncan <- lm(prestige ~ income + education, data=Duncan)
linearHypothesis(mod.duncan, "1*income - 1*education = 0")
```
### Nonlinear
Suppose that we have q nonlinear functions of the parameters\
$$
\mathbf{h}(\theta) = \{ h_1 (\theta), ..., h_q (\theta)\}'
$$
The,n, the Jacobian matrix ($\mathbf{H}(\theta)$), of rank q is
$$
\mathbf{H}_{q \times p}(\theta) =
\left(
\begin{array}
{ccc}
\frac{\partial h_1(\theta)}{\partial \theta_1} & ... & \frac{\partial h_1(\theta)}{\partial \theta_p} \\
. & . & . \\
\frac{\partial h_q(\theta)}{\partial \theta_1} & ... & \frac{\partial h_q(\theta)}{\partial \theta_p}
\end{array}
\right)
$$
where the null hypothesis $H_0: \mathbf{h} (\theta) = 0$ can be tested against the 2-sided alternative with the Wald statistic
$$
W = \frac{\mathbf{h(\hat{\theta})'\{H(\hat{\theta})[F(\hat{\theta})'F(\hat{\theta})]^{-1}H(\hat{\theta})'\}^{-1}h(\hat{\theta})}}{s^2q} \sim F_{q,n-p}
$$
## The likelihood ratio test
$$
t_{LR} = 2[l(\hat{\theta})-l(\theta_0)] \sim \chi^2_v
$$
where v is the degree of freedom.
Compare the height of the log-likelihood of the sample estimate in relation to the height of log-likelihood of the hypothesized population parameter
Alternatively,
This test considers a ratio of two maximizations,
$$
\begin{aligned}
L_r &= \text{maximized value of the likelihood under $H_0$ (the reduced model)} \\
L_f &= \text{maximized value of the likelihood under $H_0 \cup H_a$ (the full model)}
\end{aligned}
$$
Then, the likelihood ratio is:
$$
\Lambda = \frac{L_r}{L_f}
$$
which can't exceed 1 (since $L_f$ is always at least as large as $L-r$ because $L_r$ is the result of a maximization under a restricted set of the parameter values).
The likelihood ratio statistic is:
$$
\begin{aligned}
-2ln(\Lambda) &= -2ln(L_r/L_f) = -2(l_r - l_f) \\
\lim_{n \to \infty}(-2ln(\Lambda)) &\sim \chi^2_v
\end{aligned}
$$
where $v$ is the number of parameters in the full model minus the number of parameters in the reduced model.
If $L_r$ is much smaller than $L_f$ (the likelihood ratio exceeds $\chi_{\alpha,v}^2$), then we reject he reduced model and accept the full model at $\alpha \times 100 \%$ significance level
## Lagrange Multiplier (Score) {#lagrange-multiplier-score}
$$
t_S= \frac{S(\theta_0)^2}{I(\theta_0)} \sim \chi^2_v
$$
where $v$ is the degree of freedom.
Compare the slope of the log-likelihood of the sample estimate in relation to the slope of the log-likelihood of the hypothesized population parameter
## Two One-Sided Tests (TOST) Equivalence Testing
This is a good way to test whether your population effect size is within a range of practical interest (e.g., if the effect size is 0).
```{r, eval = FALSE}
library(TOSTER)
```