Skip to content

Releases: mikel-brostrom/boxmot

v6.0 - Upgrade to StrongSORT

09 Jun 17:36
7b99e99
Compare
Choose a tag to compare

Important updates

StrongSORT implemented (https://arxiv.org/pdf/2202.13514.pdf)

  • stronger appearance descriptor (OSNet)
  • camera motion compensation (ECC)
  • NSA Kalman filter (NSA)
  • EMA feature updating mechanism (EMA)
  • matching with motion cost (MC)
  • abandone matching cascade in favor of a vanilla global linear matching (woC)

Distance metric changed to cosine according to KaiyangZhou/deep-person-reid#502
Complete track.py arguments refactor

MOT16 Train evaluation results

Relevant changed/used hparams: imgz 1280, crowdhuman_yolov5m, OSNet_x0_25_msmt17, StrongSORT. Notice that
none of the models used during the evaluation has ever seen any of the MOT16 data and that our object detection model is a modest Yolov5m.

HOTA: kf-pedestrian                HOTA      DetA      AssA      DetRe     DetPr     AssRe     AssPr     LocA      RHOTA     HOTA(0)   LocA(0)   HOTALocA(0)
MOT16-02                           36.417    36.273    36.741    38.196    76.251    39.184    77.59     81.577    37.433    46.154    77.361    35.705    
MOT16-04                           59.324    58.508    60.726    63.282    76.509    64.924    79.5      81.075    61.927    78.835    75.37     59.418    
MOT16-05                           40.098    37.281    43.23     39.956    74.391    51.86     69.098    81.876    41.554    51.282    77.049    39.512    
MOT16-09                           53.181    57.122    49.57     65.872    74.664    54.868    78.804    85.721    57.137    65.772    82.193    54.06     
MOT16-10                           49.705    49.813    49.762    53.696    74.831    53.942    77.666    80.652    51.686    65.955    75.773    49.976    
MOT16-11                           62.896    59.81     66.362    71.318    73.696    72.965    82.899    86.879    68.784    74.954    83.531    62.61     
MOT16-13                           45.203    41.504    49.567    44.959    72.74     54.969    74.378    80.493    47.163    59.49     75.279    44.784    
COMBINED                           53.005    50.992    55.641    55.611    75.463    60.424    79.256    81.937    55.531    68.581    76.857    52.709    

CLEAR: kf-pedestrian               MOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT16-02                           43.56     78.641    44.451    47.272    94.369    16.667    53.704    29.63     33.463    8430      9403      503       159       9         29        16        377       
MOT16-04                           69.786    78.669    69.956    76.334    92.289    49.398    34.94     15.663    53.503    36302     11255     3033      81        41        29        13        582       
MOT16-05                           43.018    79.285    43.825    48.768    90.797    17.6      62.4      20        32.916    3325      3493      337       55        22        78        25        210       
MOT16-09                           61.29     84.193    62.165    75.195    85.231    52        48        0         49.404    3953      1304      685       46        13        12        0         108       
MOT16-10                           61.154    77.435    61.788    66.772    93.054    29.63     55.556    14.815    46.087    8225      4093      614       78        16        30        8         558       
MOT16-11                           63.56     85.508    63.942    80.358    83.037    53.623    36.232    10.145    51.915    7372      1802      1506      35        37        25        7         145       
MOT16-13                           50.629    77.098    51.397    56.603    91.578    26.168    44.86     28.972    37.666    6481      4969      596       88        28        48        31        291       
COMBINED                           60.025    79.394    60.516    67.104    91.06     32.108    48.549    19.342    46.198    74088     36319     7274      542       166       251       100       2271      

Identity: kf-pedestrian            IDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT16-02                           47.717    35.81     71.488    6386      11447     2547      
MOT16-04                           75.047    68.56     82.891    32605     14952     6730      
MOT16-05                           54.752    42.08     78.345    2869      3949      793       
MOT16-09                           65.124    61.29     69.47     3222      2035      1416      
MOT16-10                           66.758    57.331    79.896    7062      5256      1777      
MOT16-11                           74.053    72.858    75.287    6684      2490      2194      
MOT16-13                           60.474    48.926    79.158    5602      5848      1475      
COMBINED                           67.195    58.357    79.189    64430     45977     16932     

Count: kf-pedestrian               Dets      GT_Dets   IDs       GT_IDs    
MOT16-02                           8933      17833     146       54        
MOT16-04                           39335     47557     139       83        
MOT16-05                           3662      6818      136       125       
MOT16-09                           4638      5257      57        25        
MOT16-10                           8839      12318     122       54        
MOT16-11                           8878      9174      164       69        
MOT16-13                           7077      11450     135       107       
COMBINED                           81362     110407    899       517

Performance boosts from updating DeepSORT to StrongSORT

Bug fixes

Confidences are now extracted correctly: #375

v5.0 - ReID model handling automation, multi-cam tracking

06 Apr 19:22
bd27fad
Compare
Choose a tag to compare

The goal with this release is to automatize the whole process of fetching and loading ReID models. Multi-cam tracking possibility was added by @hdnh2006 in #284

Important updates

Multiple object-tracking on multiple simultaneous streams
Tracking with the --save-vid flag on folders containing images now generate an .mp4
Automatic download of ReID models trained on different datasets
Easier experimentation by setting the result folder name to the yolo and deep sort models used. The following can now be saved under this folder:

  • Tracking with --save-crop flag saves crops associated to each class and ID for each stream
  • Tracking with the --save-vid generates an .mp4 for each stream
  • Tracking with the --save-txt saves a txt files for each stream

Bug fixes

Loading of custom ReID model by specifying the path to it

MOT16 Train evaluation results

Relevant changed/used hparams: imgz 1280, crowdhuman_yolov5m, OSNet_x0_25_msmt17, alpha=0. Notice that
none of the models used during the evaluation has ever seen any of the MOT16 data.

HOTA: rep_1280-pedestrian          HOTA      DetA      AssA      DetRe     DetPr     AssRe     AssPr     LocA      RHOTA     HOTA(0)   LocA(0)   HOTALocA(0)
MOT16-02                           33.472    36.215    31.143    38.083    76.454    33.609    74.943    81.576    34.395    42.156    77.46     32.654    
MOT16-04                           58.508    58.422    59.167    63.228    76.489    63.097    79.334    81.143    61.096    77.915    75.329    58.693    
MOT16-05                           39.479    36.937    42.304    39.621    73.848    49.756    70.33     81.457    40.932    51.081    76.254    38.952    
MOT16-09                           51.897    56.914    47.372    65.839    74.434    51.6      79.236    85.818    55.841    64.133    82.232    52.737    
MOT16-10                           46.407    49.419    43.764    53.425    74.242    48.223    74.634    80.347    48.344    62.128    75.134    46.679    
MOT16-11                           58.33     59.366    57.502    70.96     73.111    65.957    77.009    86.464    63.869    69.923    82.949    58        
MOT16-13                           44.229    41.439    47.558    44.837    72.748    51.187    77.022    80.409    46.127    57.94     75.221    43.583    
COMBINED                           51.286    50.839    52.219    55.475    75.31     56.777    78.178    81.874    53.742    66.59     76.683    51.063    

CLEAR: rep_1280-pedestrian         MOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT16-02                           43.773    78.642    44.44     47.126    94.608    16.667    51.852    31.481    33.707    8404      9429      479       119       9         28        17        366       
MOT16-04                           69.634    78.654    69.803    76.233    92.221    48.193    36.145    15.663    53.362    36254     11303     3058      80        40        30        13        536       
MOT16-05                           42.754    78.816    43.532    48.592    90.569    17.6      58.4      24        32.461    3313      3505      345       53        22        73        30        229       
MOT16-09                           61.119    84.468    61.746    75.1      84.903    52        48        0         49.454    3948      1309      702       33        13        12        0         107       
MOT16-10                           60.643    77.175    61.244    66.602    92.554    31.481    55.556    12.963    45.441    8204      4114      660       74        17        30        7         580       
MOT16-11                           63.571    84.937    63.898    80.477    82.918    53.623    36.232    10.145    51.449    7383      1791      1521      30        37        25        7         148       
MOT16-13                           51.022    76.912    51.572    56.603    91.838    28.037    42.056    29.907    37.954    6481      4969      576       63        30        45        32        277       
COMBINED                           59.955    79.281    60.364    67.013    90.974    32.495    47.002    20.503    46.07     73987     36420     7341      452       168       243       106       2243      

Identity: rep_1280-pedestrian      IDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT16-02                           43.742    32.765    65.777    5843      11990     3040      
MOT16-04                           73.02     66.69     80.678    31716     15841     7596      
MOT16-05                           55.116    42.344    78.923    2887      3931      771       
MOT16-09                           62.764    59.14     66.86     3109      2148      1541      
MOT16-10                           61.175    52.598    73.093    6479      5839      2385      
MOT16-11                           66.777    65.795    67.79     6036      3138      2868      
MOT16-13                           60.323    48.751    79.099    5582      5868      1475      
COMBINED                           64.31     55.841    75.807    61652     48755     19676     

Count: rep_1280-pedestrian         Dets      GT_Dets   IDs       GT_IDs    
MOT16-02                           8883      17833     142       54        
MOT16-04                           39312     47557     138       83        
MOT16-05                           3658      6818      134       125       
MOT16-09                           4650      5257      57        25        
MOT16-10                           8864      12318     118       54        
MOT16-11                           8904      9174      157       69        
MOT16-13                           7057      11450     131       107       
COMBINED                           81328     110407    877       517

Performance boost coming from evaluating on 1280 image size

v4.0 - Mutiple ReID model options

22 Dec 16:05
e435885
Compare
Choose a tag to compare

The goal with this release is to add different possibilities for ReID models. A lot has happened in the field since DeepSORT was first release, this is an attempt to keep up with the latest advancements in ReID methods.

Important updates

Bug fixes

  • Limit high performance libraries threads to 1 to avoid that the tracker uses all the CPUs (#48)
  • Default half precision inference to false for visualization on windows (#206)
  • Fix MOT index off by one in txt files (#217)

MOT16 Train evaluation results

Relevant changed/used hparams: imgz 640, standard DeepSORT ReIDmodel. Notice that
none of the models used during the evaluation has ever seen any of the MOT16 data.

CLEAR: osnet_ain_x1_0_yolov5_lambda02-pedestrianMOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT16-02                           33.472    78.434    33.943    36.191    94.15     16.667    37.037    46.296    25.666    6454      11379     401       84        9         20        25        265       
MOT16-04                           63.852    76.516    64.054    71.359    90.714    40.964    42.169    16.867    47.094    33936     13621     3474      96        34        35        14        534       
MOT16-05                           58.199    78.433    59.226    68.568    88.008    27.2      57.6      15.2      43.411    4675      2143      637       70        34        72        19        182       
MOT16-09                           62.203    83.786    63.002    74.986    86.22     48        48        4         50.045    3942      1315      630       42        12        12        1         115       
MOT16-10                           53.613    77.071    54.092    57.761    94.027    25.926    48.148    25.926    40.369    7115      5203      452       59        14        26        14        386       
MOT16-11                           66.045    85.201    66.318    77.556    87.343    50.725    36.232    13.043    54.568    7115      2059      1031      25        35        25        9         126       
MOT16-13                           40.367    75.18     40.795    44.734    91.907    16.822    45.794    37.383    29.264    5122      6328      451       49        18        49        40        282       
COMBINED                           55.122    78.109    55.506    61.915    90.62     30.174    46.228    23.598    41.567    68359     42048     7076      425       156       239       122       1890      

Identity: osnet_ain_x1_0_yolov5_lambda02-pedestrianIDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT16-02                           39.015    27.006    70.255    4816      13017     2039      
MOT16-04                           65.92     58.887    74.86     28005     19552     9405      
MOT16-05                           68.887    61.279    78.652    4178      2640      1134      
MOT16-09                           57.422    53.681    61.724    2822      2435      1750      
MOT16-10                           58.597    47.297    76.992    5826      6492      1741      
MOT16-11                           62.009    58.535    65.922    5370      3804      2776      
MOT16-13                           52.611    39.109    80.352    4478      6972      1095      
COMBINED                           59.723    50.264    73.567    55495     54912     19940     

Count: osnet_ain_x1_0_yolov5_lambda02-pedestrianDets      GT_Dets   IDs       GT_IDs    
MOT16-02                           6855      17833     110       54        
MOT16-04                           37410     47557     155       83        
MOT16-05                           5312      6818      158       125       
MOT16-09                           4572      5257      50        25        
MOT16-10                           7567      12318     93        54        
MOT16-11                           8146      9174      125       69        
MOT16-13                           5573      11450     98        107       
COMBINED                           75435     110407    789       517

v3.0 - Evaluation automation, added colab notebook

15 Sep 13:57
842959f
Compare
Choose a tag to compare

The goal with this release is to automate the whole evaluation process using the official MOTXX evaluation data and tools.

Major changes

  • Added colab notebook
  • Added bash script for automatically handling all the MOT16 evaluation process (data download, wights download, video generation and placing in right folder...)
  • Update track.py to comply with the new yolov5 standards
  • Added id, class and confidence to plotted bboxes
  • Added LICENSE

Bug fix

  • Fix bad initial kf predictions for new objects in the field of view according to #166
  • Fix img input sizes bug according to #174
  • Class updated for each track after each detection instead of only in the initialization phase. This led to wrong class ID being displayed for each bbox

MOT16 train evaluation

CLEAR: ch_yolov5m_deep_sort-pedestrianMOTA      MOTP      MODA      CLR_Re    CLR_Pr    MTR       PTR       MLR       sMOTA     CLR_TP    CLR_FN    CLR_FP    IDSW      MT        PT        ML        Frag      
MOT16-02                           33.887    77.114    34.397    38.109    91.124    16.667    38.889    44.444    25.165    6796      11037     662       91        9         21        24        198       
MOT16-04                           63.831    76.326    63.997    72.149    89.848    40.964    39.759    19.277    46.75     34312     13245     3877      79        34        33        16        369       
MOT16-05                           56.307    76.523    57.334    71.414    83.531    40        49.6      10.4      39.541    4869      1949      960       70        50        62        13        150       
MOT16-09                           62.507    81.999    63.401    77.268    84.784    52        40        8         48.598    4062      1195      729       47        13        10        2         70        
MOT16-10                           52.703    75.324    53.239    59.685    90.253    27.778    46.296    25.926    37.975    7352      4966      794       66        15        25        14        272       
MOT16-11                           64.138    84.251    64.465    79.191    84.32     50.725    34.783    14.493    51.666    7265      1909      1351      30        35        24        10        83        
MOT16-13                           30.332    68.89     30.847    41.956    79.065    9.3458    52.336    38.318    17.279    4804      6646      1272      59        10        56        41        281       
COMBINED                           53.776    76.957    54.177    62.913    87.807    32.108    44.681    23.211    39.28     69460     40947     9645      442       166       231       120       1423      

Identity: ch_yolov5m_deep_sort-pedestrianIDF1      IDR       IDP       IDTP      IDFN      IDFP      
MOT16-02                           36.361    25.784    61.652    4598      13235     2860      
MOT16-04                           67.341    60.708    75.6      28871     18686     9318      
MOT16-05                           39.583    36.712    42.94     2503      4315      3326      
MOT16-09                           50.378    48.145    52.828    2531      2726      2260      
MOT16-10                           54.251    45.064    68.144    5551      6767      2595      
MOT16-11                           47.768    46.316    49.315    4249      4925      4367      
MOT16-13                           39.393    30.148    56.814    3452      7998      2624      
COMBINED                           54.619    46.877    65.426    51755     58652     27350     

Count: ch_yolov5m_deep_sort-pedestrianDets      GT_Dets   IDs       GT_IDs    
MOT16-02                           7458      17833     50        54        
MOT16-04                           38189     47557     99        83        
MOT16-05                           5829      6818      42        125       
MOT16-09                           4791      5257      21        25        
MOT16-10                           8146      12318     46        54        
MOT16-11                           8616      9174      49        69        
MOT16-13                           6076      11450     54        107       
COMBINED                           79105     110407    361       517


v2.0 - CI pipeline, automatic DeepSORT weight download

17 Jun 07:30
60d0a40
Compare
Choose a tag to compare

The goal with this release is to create a CI pipeline for track.py. Automatic weight download for DeepSORT.

Important updates

  • MOT16 Evaluation based on #73
  • Adapted track script to new yolov5 v5.0 standards
  • README update explaining how to track different classes
  • CI pipeline for testing CPU inference added
  • Automatic weight downloading

Yolov5 DeepSORT creation

04 Dec 11:52
Compare
Choose a tag to compare

The goal with this release is to make a 2 stage tracker based on Yolov5 publicly available for the first time ever (according to my personal search done on github 😅)

Major updates

  • Basic tracking working: Yolov5 passes detections to DeepSORT which handles the tracking .
  • Updated tracker when no detections. Based on #21
  • Adapted track script to new yolov5 v4.0 standards

Bug fixes

  • PyTorch 1.7 compatibility update

Models