-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_appendix.R
387 lines (363 loc) · 16.1 KB
/
03_appendix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
## Mikael Poul Johannesson
## August 2017
## Start Matter ------------------------------------------------------
library(dplyr)
library(tidyr)
library(forcats)
library(ggplot2)
source("00_utils.R")
set.seed(2016)
## Raw data ----------------------------------------------------------
## Data for experiment I (candidate choice). See `01_data.R`.
## Md5sum: c8c626eda905dc6052876f4b2975142f
## tools::md5sum("data/data-experiment-one.csv")
exp_one_raw <- read.csv("data/data-experiment-one.csv")
## Data for experiment II (candidate prediction). See `01_data.R`.
## Md5sum: dcd2a2412a6865422059f311107a21f2
## tools::md5sum("data/data-experiment-two.csv")
exp_two_raw <- read.csv("data/data-experiment-two.csv")
## Treatment labels.
## Md5sum: ba9b9f40178e395a195ee30b7659ee5d
## tools::md5sum("data/labels-vars.xlsx")
labels_treatment_raw <- read_excel("data/labels-vars.xlsx")
## Prep data ---------------------------------------------------------
## DESCRIPTION
## The prefix of the variable denotes the unit level, as follows:
## 'resp_' are respondent-level variables, 'exp_' are experiment-level
## variables (three for each respondent), 'cand_' are candidate-level
## variables (two for each experiment). Variable 'post' is also
## candidate-level (1/0 for whether that candidate were choosen).
## Experiment one: Choosing representative
exp_one <-
exp_one_raw %>%
## Lining up factor lvls as I want them for the figures
mutate(
cand_gender = lvls_reorder(factor(cand_gender), c(2, 1)),
cand_education = lvls_reorder(factor(cand_education), c(1, 2, 4, 3)),
cand_region = lvls_reorder(factor(cand_region), c(4, 2, 5, 6, 1, 3)),
cand_work = lvls_reorder(factor(cand_work), c(4, 1, 2, 3, 5, 6)),
cand_relationship = lvls_reorder(factor(cand_relationship), c(2, 1, 3))
) %>%
mutate_at(
vars(cand_matched_opinion_1, cand_matched_opinion_2, cand_matched_opinion_3),
function(x) lvls_reorder(factor(x), c(2, 1, 3))
) %>%
mutate(
cand_opinion_1 = lvls_reorder(factor(cand_opinion_1), c(3, 7, 5, 2, 1, 4, 6)),
cand_opinion_2 = lvls_reorder(factor(cand_opinion_2), c(3, 7, 5, 2, 1, 4, 6)),
cand_opinion_3 = lvls_reorder(factor(cand_opinion_3), c(3, 7, 5, 2, 1, 4, 6)),
cand_fullMatched_opinion_1 = abs(as.numeric(cand_opinion_1) - resp_reduce_ineq),
cand_fullMatched_opinion_1 = case_when(
cand_fullMatched_opinion_1 == 0 ~ "Same position",
cand_fullMatched_opinion_1 == 1 ~ "Difference of 1",
cand_fullMatched_opinion_1 == 2 ~ "Difference of 2",
cand_fullMatched_opinion_1 == 3 ~ "Difference of 3",
cand_fullMatched_opinion_1 == 4 ~ "Difference of 4",
cand_fullMatched_opinion_1 == 5 ~ "Difference of 5",
cand_fullMatched_opinion_1 == 6 ~ "Difference of 6"),
cand_fullMatched_opinion_1 = factor(cand_fullMatched_opinion_1,
levels = c("Same position",
"Difference of 1",
"Difference of 2",
"Difference of 3",
"Difference of 4",
"Difference of 5",
"Difference of 6")),
cand_fullMatched_opinion_2 = abs(as.numeric(cand_opinion_2) - resp_ref_social_rights),
cand_fullMatched_opinion_2 = case_when(
cand_fullMatched_opinion_2 == 0 ~ "Same position",
cand_fullMatched_opinion_2 == 1 ~ "Difference of 1",
cand_fullMatched_opinion_2 == 2 ~ "Difference of 2",
cand_fullMatched_opinion_2 == 3 ~ "Difference of 3",
cand_fullMatched_opinion_2 == 4 ~ "Difference of 4",
cand_fullMatched_opinion_2 == 5 ~ "Difference of 5",
cand_fullMatched_opinion_2 == 6 ~ "Difference of 6"),
cand_fullMatched_opinion_2 = factor(cand_fullMatched_opinion_2,
levels = c("Same position",
"Difference of 1",
"Difference of 2",
"Difference of 3",
"Difference of 4",
"Difference of 5",
"Difference of 6")),
cand_fullMatched_opinion_3 = abs(as.numeric(cand_opinion_3) - resp_emi_red_abroad),
cand_fullMatched_opinion_3 = case_when(
cand_fullMatched_opinion_3 == 0 ~ "Same position",
cand_fullMatched_opinion_3 == 1 ~ "Difference of 1",
cand_fullMatched_opinion_3 == 2 ~ "Difference of 2",
cand_fullMatched_opinion_3 == 3 ~ "Difference of 3",
cand_fullMatched_opinion_3 == 4 ~ "Difference of 4",
cand_fullMatched_opinion_3 == 5 ~ "Difference of 5",
cand_fullMatched_opinion_3 == 6 ~ "Difference of 6"),
cand_fullMatched_opinion_3 = factor(cand_fullMatched_opinion_3,
levels = c("Same position",
"Difference of 1",
"Difference of 2",
"Difference of 3",
"Difference of 4",
"Difference of 5",
"Difference of 6")))
## Experiment two: Prediciting attitude
## Lining up factor lvls as I want them for the figures
exp_two <-
exp_two_raw %>%
mutate(
cand_gender = lvls_reorder(factor(cand_gender), c(2, 1)),
cand_education = lvls_reorder(factor(cand_education), c(1, 2, 4, 3)),
cand_region = lvls_reorder(factor(cand_region), c(4, 2, 5, 6, 1, 3)),
cand_religion = lvls_reorder(factor(cand_religion), c(3, 1, 2)),
cand_work = lvls_reorder(factor(cand_work), c(4, 1, 2, 3, 5, 6)),
cand_relationship = lvls_reorder(factor(cand_relationship), c(2, 1, 3))
)
## TABLE about respondents, exp one ----------------------------------
exp_one %>%
filter(!duplicated(responseid)) %>%
select(resp_age_2, resp_region_2, resp_religion, resp_work,
resp_relationship, resp_education_2, resp_gender_2,
resp_ref_social_rights, resp_emi_red_abroad, resp_reduce_ineq) %>%
gather(variable, value, na.rm = TRUE) %>%
group_by(variable) %>%
mutate(n_var = n()) %>%
ungroup() %>%
group_by(variable, value) %>%
summarize(n = n(),
prop = n / n_var[1],
prop = round(prop, 2) * 100) %>%
ungroup() %>%
mutate(
variable = case_when(
variable == "resp_age_2" ~ "Age",
variable == "resp_education_2" ~ "Education",
variable == "resp_emi_red_abroad" ~ "Emission reduction issue",
variable == "resp_gender_2" ~ "Gender",
variable == "resp_reduce_ineq" ~ "Income inequality issue",
variable == "resp_ref_social_rights" ~ "Refugee rights issue",
variable == "resp_region_2" ~ "Region",
variable == "resp_relationship" ~ "Marital Status",
variable == "resp_religion" ~ "Religious affiliation",
variable == "resp_work" ~ "Professional field"
),
variable = factor(variable),
variable = lvls_reorder(variable, c(1, 2, 4, 7, 6, 9, 10, 3, 5, 8))) %>%
arrange(variable) %>%
rename_(
"Variable" = "variable",
"Value" = "value",
"N" = "n",
"%" = "prop"
) %>%
knitr::kable(format = "latex", booktabs = TRUE)
## TABLE about respondents, exp two ----------------------------------
exp_two %>%
filter(!duplicated(responseid)) %>%
select(resp_age_2, resp_region_2, resp_religion, resp_work,
resp_relationship, resp_education_2, resp_gender_2,
resp_ref_social_rights, resp_emi_red_abroad, resp_reduce_ineq) %>%
gather(variable, value, na.rm = TRUE) %>%
group_by(variable) %>%
mutate(n_var = n()) %>%
ungroup() %>%
group_by(variable, value) %>%
summarize(n = n(),
prop = n / n_var[1],
prop = round(prop, 2) * 100) %>%
ungroup() %>%
mutate(
variable = case_when(
variable == "resp_age_2" ~ "Age",
variable == "resp_education_2" ~ "Education",
variable == "resp_emi_red_abroad" ~ "Emission reduction issue",
variable == "resp_gender_2" ~ "Gender",
variable == "resp_reduce_ineq" ~ "Income inequality issue",
variable == "resp_ref_social_rights" ~ "Refugee rights issue",
variable == "resp_region_2" ~ "Region",
variable == "resp_relationship" ~ "Marital Status",
variable == "resp_religion" ~ "Religious affiliation",
variable == "resp_work" ~ "Professional field"
),
variable = factor(variable),
variable = lvls_reorder(variable, c(1, 2, 4, 7, 6, 9, 10, 3, 5, 8))) %>%
arrange(variable) %>%
rename_(
"Variable" = "variable",
"Value" = "value",
"N" = "n",
"%" = "prop"
) %>%
knitr::kable(format = "latex", booktabs = TRUE)
## TBL: Treatment Assignement, Experiment 1 --------------------------
exp_one %>%
select(cand_age, cand_education, cand_gender, cand_region, cand_relationship, cand_religion, cand_work, cand_opinion_1, cand_opinion_2, cand_opinion_3, exp_version_label) %>%
gather(variable, value, matches("cand_"), na.rm = TRUE) %>%
group_by(exp_version_label, variable) %>%
mutate(n_var = n()) %>%
ungroup() %>%
group_by(exp_version_label, variable, value) %>%
summarize(n = n(),
prop = n / n_var[1],
prop = round(prop, 2) * 100) %>%
ungroup() %>%
mutate(
n = paste0(n, " (.", prop, ")"),
exp_version_label = ifelse(exp_version_label == "Both", "both", "only"),
variable = case_when(
variable == "cand_age" ~ "Age",
variable == "cand_education" ~ "Education",
variable == "cand_opinion_3" ~ "Emission reduction issue",
variable == "cand_gender" ~ "Gender",
variable == "cand_opinion_1" ~ "Income inequality issue",
variable == "cand_opinion_2" ~ "Refugee rights issue",
variable == "cand_region" ~ "Region",
variable == "cand_relationship" ~ "Marital Status",
variable == "cand_religion" ~ "Religious affiliation",
variable == "cand_work" ~ "Occupation"
),
variable = factor(variable),
variable = lvls_reorder(variable, c(1, 4, 2, 6, 7, 9, 10, 3, 5, 8))) %>%
select(-prop) %>%
spread(exp_version_label, n) %>%
## mutate(both = ifelse(is.na(both), "0 (0)", both),
## only = ifelse(is.na(only), "0 (0)", only)) %>%
rename(
"Treatment" = "variable",
"Value" = "value",
"Both" = "both",
"Group or issue only" = "only"
) %>%
knitr::kable(format = "latex", booktabs = TRUE)
#
## TBL: Treatment Assignement, Experiment 2 -----------------------------------------------------------
#
exp_two %>%
select(cand_age, cand_education, cand_gender, cand_region, cand_relationship, cand_religion, cand_work, cand_opinion_1, cand_opinion_2, cand_opinion_3, exp_version_label) %>%
gather(variable, value, - exp_version_label, na.rm = TRUE) %>%
group_by(exp_version_label, variable) %>%
mutate(n_var = n()) %>%
ungroup() %>%
group_by(exp_version_label, variable, value) %>%
summarize(n = n(),
prop = n / n_var[1],
prop = round(prop, 2) * 100) %>%
ungroup() %>%
mutate(
variable = case_when(
variable == "cand_age" ~ "Age",
variable == "cand_education" ~ "Education",
variable == "cand_opinion_3" ~ "Emission reduction issue",
variable == "cand_gender" ~ "Gender",
variable == "cand_opinion_1" ~ "Income inequality issue",
variable == "cand_opinion_2" ~ "Refugee rights issue",
variable == "cand_region" ~ "Region",
variable == "cand_relationship" ~ "Marital Status",
variable == "cand_religion" ~ "Religious affiliation",
variable == "cand_work" ~ "Occupation"
),
variable = factor(variable),
variable = lvls_reorder(variable, c(1, 4, 2, 6, 7, 9, 10, 3, 5, 8))) %>%
arrange(variable) %>%
rename_(
"Treatment" = "variable",
"Value" = "value",
"N" = "n",
"%" = "prop"
) %>%
knitr::kable(format = "latex", booktabs = TRUE)
#
## ------------------------------------------------------------------------------------------------
#
## Figure with effect of "politician" vs "person" ---------------------
#
## Figure a5
fig_a5_data <- exp_two %>%
diff_diff_effect(post, cand_age, cand_education,
cand_gender, cand_region, cand_religion,
cand_relationship, cand_work,
subgroup = "exp_attitude_label",
diff = "exp_type",
cluster = "responseid") %>%
add_treatment_labels() %>%
arrange(exp_attitude_label) %>%
mutate(exp_attitude_label = paste0('"', as.character(sapply(exp_attitude_label, str_wrap)), '"'),
exp_attitude_label = lvls_reorder(factor(exp_attitude_label), c(3, 2, 1)),
issue = case_when(
grepl("income", exp_attitude_label) ~ "Income inequality issue",
grepl("Refugees", exp_attitude_label) ~ "Refugee rights issue",
grepl("emissions", exp_attitude_label) ~ "Emission reduction issue"),
issue = lvls_reorder(factor(issue), c(2, 3, 1)))
#
pdf("output/fig_a5.pdf", height=4, width = 8.5)
fig_a5 <- fig_a5_data %>%
ggplot(aes(x = estimate, y = value)) +
facet_grid(treatment_label ~ issue,
scales = "free_y",
space = "free_y") +
geom_errorbar2() +
geom_vline(aes(xintercept = 0), linetype = "dotted") +
scale_x_continuous(limits = c(-.4, .4),
expand = c(0, 0),
breaks = seq(-.4, .4, .2)) +
labs(x = "Difference in change in predicted Pr(Respondent thinks that candidate agrees with issue statement) vs other person",
y = NULL) +
theme_descr()
fig_a5
dev.off()
#
#
# ------------------------------------------------
# Figure C.3
# Compare respondents effect marker on preferences vs effect of candidates' marker on preference (Figure 4)
fig4_data <- exp_two %>%
diff_effect(post, cand_age, cand_education,
cand_gender, cand_region, cand_religion,
#cand_relationship, cand_work,
subgroup = "exp_attitude_label",
cluster = "responseid") %>%
add_treatment_labels() %>%
arrange(exp_attitude_label) %>%
mutate(exp_attitude_label = paste0('"', as.character(sapply(exp_attitude_label, str_wrap)), '"'),
exp_attitude_label = lvls_reorder(factor(exp_attitude_label), c(3, 2, 1)),
issue = case_when(
grepl("income", exp_attitude_label) ~ "Income inequality\nissue",
grepl("Refugees", exp_attitude_label) ~ "Refugee rights\nissue",
grepl("emissions", exp_attitude_label) ~ "Emission reduction\nissue"),
issue = lvls_reorder(factor(issue), c(2, 3, 1)))
#
pdf("output/fig_a4.pdf", height=4, width = 8.5)
fig4_data %>%
ggplot(aes(x = estimate, y = value)) +
facet_grid(treatment_label ~ issue,
scales = "free_y",
space = "free_y") +
geom_errorbar2() +
geom_vline(aes(xintercept = 0), linetype = "dotted") +
scale_x_continuous(limits = c(-.3, .3),
expand = c(0, 0),
breaks = seq(-.3, .3, .15)) +
labs(x = "Difference in change in predicted Pr(Respondent thinks that candidate agrees with issue statement) vs other person",
y = NULL) +
theme_descr()
dev.off()
## TBL: Balance tests, Experiment 1 and 2 ----------------------------
attach(exp_one)
binary <- ifelse(exp_version_label=="Only substantive information", NA, as.numeric(exp_version_label))
listCategorial <- c("resp_education", "resp_gender", "resp_region", 'resp_religion', 'resp_relationship',
"resp_work")
lapply(listCategorial, function(var) {
variable <- get(var)
table <- table(variable, binary)
fi.test <- fisher.test(table, simulate.p.value = TRUE, B = 1e5)
print(var)
print(paste("Fisher: ", fi.test$p.value))
})
t.test(resp_age~binary)
wilcox.test(resp_age,binary, exact=FALSE, correct=FALSE)
attach(exp_two)
listCategorial <- c("resp_agree_opinion_1", "resp_agree_opinion_2", "resp_agree_opinion_3")
lapply(listCategorial, function(var) {
variable <- get(var)
category <- exp_attitude_label
table <- table(variable, category)
test <- fisher.test(table, simulate.p.value = TRUE, B = 1e5)
print(var)
print(test$p.value)
})