-
Notifications
You must be signed in to change notification settings - Fork 524
/
Copy pathevent.rs
264 lines (236 loc) · 8.71 KB
/
event.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use super::*;
use std::sync::*;
/// A type that you can use to declare and implement an event of a specified delegate type.
///
/// The implementation is thread-safe and designed to avoid contention between events being
/// raised and delegates being added or removed.
pub struct Event<T: Interface> {
swap: Mutex<()>,
change: Mutex<()>,
delegates: Array<T>,
}
impl<T: Interface> Default for Event<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: Interface> Event<T> {
/// Creates a new, empty `Event<T>`.
pub fn new() -> Self {
Self { delegates: Array::new(), swap: Mutex::default(), change: Mutex::default() }
}
/// Registers a delegate with the event object.
pub fn add(&mut self, delegate: &T) -> Result<i64> {
let mut _lock_free_drop = Array::new();
Ok({
let _change_lock = self.change.lock().unwrap();
let mut new_delegates = Array::with_capacity(self.delegates.len() + 1)?;
for delegate in self.delegates.as_slice() {
new_delegates.push(delegate.clone());
}
let delegate = Delegate::new(delegate)?;
let token = delegate.to_token();
new_delegates.push(delegate);
let _swap_lock = self.swap.lock().unwrap();
_lock_free_drop = self.delegates.swap(new_delegates);
token
})
}
/// Revokes a delegate's registration from the event object.
pub fn remove(&mut self, token: i64) -> Result<()> {
let mut _lock_free_drop = Array::new();
{
let _change_lock = self.change.lock().unwrap();
if self.delegates.is_empty() {
return Ok(());
}
let mut capacity = self.delegates.len() - 1;
let mut new_delegates = Array::new();
let mut removed = false;
if capacity == 0 {
removed = self.delegates.as_slice()[0].to_token() == token;
} else {
new_delegates = Array::with_capacity(capacity)?;
for delegate in self.delegates.as_slice() {
if !removed && delegate.to_token() == token {
removed = true;
continue;
}
if capacity == 0 {
break;
}
new_delegates.push(delegate.clone());
capacity -= 1;
}
}
if removed {
let _swap_lock = self.swap.lock().unwrap();
_lock_free_drop = self.delegates.swap(new_delegates);
}
}
Ok(())
}
/// Clears the event, removing all delegates.
pub fn clear(&mut self) {
let mut _lock_free_drop = Array::new();
{
let _change_lock = self.change.lock().unwrap();
if self.delegates.is_empty() {
return;
}
let _swap_lock = self.swap.lock().unwrap();
_lock_free_drop = self.delegates.swap(Array::new());
}
}
/// Invokes all of the event object's registered delegates with the provided callback.
pub fn call<F: FnMut(&T) -> Result<()>>(&mut self, mut callback: F) -> Result<()> {
let lock_free_calls = {
let _swap_lock = self.swap.lock().unwrap();
self.delegates.clone()
};
for delegate in lock_free_calls.as_slice() {
if let Err(error) = delegate.call(&mut callback) {
const RPC_E_SERVER_UNAVAILABLE: HRESULT = HRESULT(-2147023174); // HRESULT_FROM_WIN32(RPC_S_SERVER_UNAVAILABLE)
if matches!(error.code(), crate::imp::RPC_E_DISCONNECTED | crate::imp::JSCRIPT_E_CANTEXECUTE | RPC_E_SERVER_UNAVAILABLE) {
self.remove(delegate.to_token())?;
}
}
}
Ok(())
}
}
/// A thread-safe reference-counted array of delegates.
struct Array<T: Interface> {
buffer: *mut Buffer<T>,
len: usize,
_phantom: std::marker::PhantomData<T>,
}
impl<T: Interface> Default for Array<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: Interface> Array<T> {
/// Creates a new, empty `Array<T>` with no capacity.
fn new() -> Self {
Self { buffer: std::ptr::null_mut(), len: 0, _phantom: std::marker::PhantomData }
}
/// Creates a new, empty `Array<T>` with the specified capacity.
fn with_capacity(capacity: usize) -> Result<Self> {
Ok(Self { buffer: Buffer::new(capacity)?, len: 0, _phantom: std::marker::PhantomData })
}
/// Swaps the contents of two `Array<T>` objects.
fn swap(&mut self, mut other: Self) -> Self {
unsafe { std::ptr::swap(&mut self.buffer, &mut other.buffer) };
std::mem::swap(&mut self.len, &mut other.len);
other
}
/// Returns `true` if the array contains no delegates.
fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the number of delegates in the array.
fn len(&self) -> usize {
self.len
}
/// Appends a delegate to the back of the array.
fn push(&mut self, delegate: Delegate<T>) {
unsafe {
std::ptr::write((*self.buffer).as_mut_ptr().add(self.len), delegate);
self.len += 1;
}
}
/// Returns a slice containing of all delegates.
fn as_slice(&self) -> &[Delegate<T>] {
if self.is_empty() {
&[]
} else {
unsafe { std::slice::from_raw_parts((*self.buffer).as_ptr(), self.len) }
}
}
/// Returns a mutable slice of all delegates.
fn as_mut_slice(&mut self) -> &mut [Delegate<T>] {
if self.is_empty() {
&mut []
} else {
unsafe { std::slice::from_raw_parts_mut((*self.buffer).as_mut_ptr(), self.len) }
}
}
}
impl<T: Interface> Clone for Array<T> {
fn clone(&self) -> Self {
if !self.is_empty() {
unsafe { (*self.buffer).0.add_ref() };
}
Self { buffer: self.buffer, len: self.len, _phantom: std::marker::PhantomData }
}
}
impl<T: Interface> Drop for Array<T> {
fn drop(&mut self) {
unsafe {
if !self.is_empty() && (*self.buffer).0.release() == 0 {
std::ptr::drop_in_place(self.as_mut_slice());
crate::imp::heap_free(self.buffer as _)
}
}
}
}
/// A reference-counted buffer.
#[repr(C)]
struct Buffer<T>(crate::imp::RefCount, std::marker::PhantomData<T>);
impl<T: Interface> Buffer<T> {
/// Creates a new `Buffer` with the specified size in bytes.
fn new(len: usize) -> Result<*mut Self> {
if len == 0 {
Ok(std::ptr::null_mut())
} else {
let alloc_size = std::mem::size_of::<Self>() + len * std::mem::size_of::<Delegate<T>>();
let header = crate::imp::heap_alloc(alloc_size)? as *mut Self;
unsafe {
header.write(Self(crate::imp::RefCount::new(1), std::marker::PhantomData));
}
Ok(header)
}
}
/// Returns a raw pointer to the buffer's contents. The resulting pointer might be uninititalized.
fn as_ptr(&self) -> *const Delegate<T> {
unsafe { (self as *const Self).add(1) as *const _ }
}
/// Returns a raw mutable pointer to the buffer's contents. The resulting pointer might be uninititalized.
fn as_mut_ptr(&mut self) -> *mut Delegate<T> {
unsafe { (self as *mut Self).add(1) as *mut _ }
}
}
/// Holds either a direct or indirect reference to a delegate. A direct reference is typically
/// agile while an indirect reference is an agile wrapper.
#[derive(Clone)]
enum Delegate<T> {
Direct(T),
Indirect(AgileReference<T>),
}
impl<T: Interface> Delegate<T> {
/// Creates a new `Delegate<T>`, containing a suitable reference to the specified delegate.
fn new(delegate: &T) -> Result<Self> {
if delegate.cast::<crate::imp::IAgileObject>().is_ok() {
Ok(Self::Direct(delegate.clone()))
} else {
Ok(Self::Indirect(AgileReference::new(delegate)?))
}
}
/// Returns an encoded token to identify the delegate.
fn to_token(&self) -> i64 {
unsafe {
match self {
Self::Direct(delegate) => crate::imp::EncodePointer(std::mem::transmute_copy(delegate)) as i64,
Self::Indirect(delegate) => crate::imp::EncodePointer(std::mem::transmute_copy(delegate)) as i64,
}
}
}
/// Invokes the delegates with the provided callback.
fn call<F: FnMut(&T) -> Result<()>>(&self, mut callback: F) -> Result<()> {
match self {
Self::Direct(delegate) => callback(delegate),
Self::Indirect(delegate) => callback(&delegate.resolve()?),
}
}
}