diff --git a/examples/trials/sklearn/classification/main.py b/examples/trials/sklearn/classification/main.py index 280dc26fb8..6839e830f6 100644 --- a/examples/trials/sklearn/classification/main.py +++ b/examples/trials/sklearn/classification/main.py @@ -23,13 +23,13 @@ import logging import numpy as np - LOG = logging.getLogger('sklearn_classification') def load_data(): '''Load dataset, use 20newsgroups dataset''' digits = load_digits() - X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=99, test_size=0.25) + X_train, X_test, y_train, y_test = train_test_split( + digits.data, digits.target, random_state=99, test_size=0.25) ss = StandardScaler() X_train = ss.fit_transform(X_train) @@ -59,7 +59,7 @@ def get_model(PARAMS): return model -def run(X_train, X_test, y_train, y_test, PARAMS): +def run(X_train, X_test, y_train, y_test, model): '''Train model and predict result''' model.fit(X_train, y_train) score = model.score(X_test, y_test) diff --git a/examples/trials/sklearn/regression/main.py b/examples/trials/sklearn/regression/main.py index d4dc3449e3..af54bf225f 100644 --- a/examples/trials/sklearn/regression/main.py +++ b/examples/trials/sklearn/regression/main.py @@ -33,23 +33,22 @@ def load_data(): '''Load dataset, use boston dataset''' boston = load_boston() - X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=99, test_size=0.25) + X_train, X_test, y_train, y_test = train_test_split( + boston.data, boston.target, random_state=99, test_size=0.25) #normalize data ss_X = StandardScaler() ss_y = StandardScaler() X_train = ss_X.fit_transform(X_train) X_test = ss_X.transform(X_test) - y_train = ss_y.fit_transform(y_train[:, None])[:,0] - y_test = ss_y.transform(y_test[:, None])[:,0] + y_train = ss_y.fit_transform(y_train[:, None])[:, 0] + y_test = ss_y.transform(y_test[:, None])[:, 0] return X_train, X_test, y_train, y_test def get_default_parameters(): '''get default parameters''' - params = { - 'model_name': 'LinearRegression' - } + params = {'model_name': 'LinearRegression'} return params def get_model(PARAMS): @@ -76,8 +75,7 @@ def get_model(PARAMS): raise return model - -def run(X_train, X_test, y_train, y_test, PARAMS): +def run(X_train, X_test, y_train, y_test, model): '''Train model and predict result''' model.fit(X_train, y_train) predict_y = model.predict(X_test)