diff --git a/nni/algorithms/hpo/dngo_tuner.py b/nni/algorithms/hpo/dngo_tuner.py index 09257b0906..276ec75168 100644 --- a/nni/algorithms/hpo/dngo_tuner.py +++ b/nni/algorithms/hpo/dngo_tuner.py @@ -40,7 +40,7 @@ def _random_config(search_space, random_state): return chosen_config -class DngoTuner(Tuner): +class DNGOTuner(Tuner): def __init__(self, optimize_mode='maximize', sample_size=1000, trials_per_update=20, num_epochs_per_training=500): self.searchspace_json = None diff --git a/test/ut/sdk/test_builtin_tuners.py b/test/ut/sdk/test_builtin_tuners.py index 56c318eb21..a60da8ecb6 100644 --- a/test/ut/sdk/test_builtin_tuners.py +++ b/test/ut/sdk/test_builtin_tuners.py @@ -12,7 +12,7 @@ from unittest import TestCase, main from nni.algorithms.hpo.batch_tuner import BatchTuner -from nni.algorithms.hpo.dngo_tuner import DngoTuner +from nni.algorithms.hpo.dngo_tuner import DNGOTuner from nni.algorithms.hpo.evolution_tuner import EvolutionTuner from nni.algorithms.hpo.gp_tuner import GPTuner from nni.algorithms.hpo.gridsearch_tuner import GridSearchTuner @@ -390,7 +390,7 @@ def test_pbt(self): self.import_data_test_for_pbt() def test_dngo(self): - tuner_fn = lambda: DngoTuner(trials_per_update=100, num_epochs_per_training=1) + tuner_fn = lambda: DNGOTuner(trials_per_update=100, num_epochs_per_training=1) self.search_space_test_all(tuner_fn, fail_types=["choice_str", "choice_mixed", "normal", "lognormal", "qnormal", "qlognormal"]) self.import_data_test(tuner_fn, stype='choice_num')