-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathcifar_dataset.py
239 lines (186 loc) · 8.79 KB
/
cifar_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import time
import json
import torch
import numpy as np
import pathlib
from torchvision import datasets, transforms
from torch.utils.data import TensorDataset, DataLoader
from numpy.random import RandomState
TRAINSET = "trainset.json"
TRAINSET_UNLAB = "trainset_unlab.json"
TRAINSET_UNLAB_RAND = "trainset_unlab_rand.json"
TESTSET = "testset.json"
ROOT = './data'
class CIFAR100:
def __init__(self, user_idx=None, test_only=None, args=None, read_data=True) :
if read_data: # Reads the data previously saved on files
if user_idx == -1:
if test_only:
print("Reading testing file")
file = os.path.join(ROOT,TESTSET)
else:
print("Reading training labeled file")
file = os.path.join(ROOT,TRAINSET)
elif user_idx == -2:
print("Reading unlabeled training file")
file = os.path.join(ROOT, TRAINSET_UNLAB)
elif user_idx == -3:
print("Reading unlabeled random training file")
file = os.path.join(ROOT, TRAINSET_UNLAB_RAND)
with open(file, 'r') as f:
json_file = json.load(f)
self.data = json_file
else: # Create, preprocess and save the datasets
from RandAugment import RandAugment
trans = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
transform_unlabeltrain = transforms.Compose([
RandAugment(1, 10),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
# Download and preprocess datasets
trainset = datasets.CIFAR100('./data', train=True, download=True, transform=transform_train)
unlabel_trainset = datasets.CIFAR100('./data', train=True, download=True, transform=transform_unlabeltrain)
self.pretestset = datasets.CIFAR100('./data', train=False, download=True, transform=trans)
train_loader = DataLoader(trainset, batch_size=len(trainset))
ultrain_loader = DataLoader(unlabel_trainset, batch_size=len(unlabel_trainset))
X_train = next(iter(train_loader))[0].numpy()
Y_train = next(iter(train_loader))[1].numpy()
X_unlabel_train = next(iter(ultrain_loader))[0].numpy()
Y_unlabel_train = next(iter(ultrain_loader))[1].numpy()
self.pretrainset, trainset_unlab_rand, trainset_unlab, \
self.embed_dim = partition_imagedataset(X_train, Y_train, X_unlabel_train, Y_unlabel_train,args)
self.trainset = _process(self.pretrainset, train=True)
self.trainset_unlab = _process(trainset_unlab, train=True)
self.trainset_unlab_rand = _process(trainset_unlab_rand, train=True)
self.testset = _process(self.pretestset, train=False)
save_json(self.trainset, TRAINSET)
save_json(self.trainset_unlab, TRAINSET_UNLAB)
save_json(self.trainset_unlab_rand, TRAINSET_UNLAB_RAND)
save_json(self.testset, TESTSET)
def save_json(dict, filename):
f = open(os.path.join('./data',filename), "w")
json.dump(dict,f)
f.close()
def _process(dataset, train=True):
'''Process a Torchvision/preprocessed dataset to expected FLUTE format'''
print('Converting data to expected format...')
start_time = time.time()
data_dict = {'users':[], 'num_samples': [], 'user_data':{}, 'user_data_label':{}}
for i in range(len(dataset)):
if train:
x, y = dataset[i]['x'], dataset[i]['y']
else:
x, y = dataset[i]
data_dict['users'].append(f'{i:04d}')
data_dict['num_samples'].append(len(y) if train else 1)
data_dict['user_data'][f'{i:04d}'] = [xi.tolist() for xi in x] if train else [x.tolist()]
data_dict['user_data_label'][f'{i:04d}'] = [yi.tolist() for yi in y] if train else y
print(f'Finished converting data in {time.time() - start_time:.2f}s.')
return data_dict
def partition_imagedataset(X_train, Y_train, X_unlabel_train, Y_unlabel_train, args):
if args['isclust'] == 1:
partition = __getClusteredData__(Y_train, args['ensize'])
elif args['isclust'] == 2:
partition = __getClusteredMixedData__(Y_train, args['ensize'])
else:
partition = __getDirichletData__(Y_train, args)
dataset_train = []
dataset_val = []
dataset_val_norand = []
dataset_test = []
train_ratio = args['train_ratio']
val_ratio = args['val_ratio']
test_ratio = args['test_ratio']
x_for_embed = np.shape(X_train[0])
for (i, ind) in enumerate(partition):
x = X_train[ind]
y = Y_train[ind]
x_ul = X_unlabel_train[ind]
y_ul = Y_unlabel_train[ind]
n_i = len(ind)
train_size = int(train_ratio * n_i)
val_size = int(val_ratio * n_i)
test_size = int(test_ratio * n_i)
x_train = torch.Tensor(x[val_size:val_size + train_size])
y_train = torch.LongTensor(y[val_size:val_size + train_size])
dataset_train_torch = {'x': x_train, 'y':y_train}
if val_size == 0:
x_val = x_train
y_cal = y_train
dataset_val_torch = dataset_train_torch
dataset_val_torch_norand = dataset_train_torch
else:
x_val = torch.Tensor(x[:val_size])
y_val = torch.LongTensor(y[:val_size])
x_ul_val = torch.Tensor(x_ul[:val_size])
y_ul_val = torch.LongTensor(y_ul[:val_size])
dataset_val_torch = {'x': x_ul_val, 'y': y_ul_val}
dataset_val_torch_norand = {'x':x_val, 'y':y_val}
dataset_train.append(dataset_train_torch)
dataset_val.append(dataset_val_torch)
dataset_val_norand.append(dataset_val_torch_norand)
return dataset_train, dataset_val, dataset_val_norand, x_for_embed
def __getDirichletData__(y, args):
n = args['ensize']
n_nets = args['ensize']
K = args['num_classes']
num_c = args['num_classes']
labelList_true = y
min_size = 0
N = len(labelList_true)
rnd = 0
rann = RandomState(rnd)
net_dataidx_map = {}
p_client = np.zeros((n, num_c))
for i in range(n):
p_client[i] = rann.dirichlet(np.repeat(args['alpha'], num_c))
idx_batch = [[] for _ in range(n_nets)]
for k in range(K):
idx_k = np.where(labelList_true == k)[0]
rann.shuffle(idx_k)
proportions = p_client[:, k]
proportions = proportions / proportions.sum()
proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1]
idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))]
for j in range(n_nets):
if args['shuffle'] == 1:
rann.shuffle(idx_batch[j])
net_dataidx_map[j] = idx_batch[j]
net_cls_counts_label = {}
net_cls_counts_unlabel = {}
for net_i in range(len(idx_batch)):
n_i = len(idx_batch[net_i])
train_size = int(args['train_ratio'] * n_i)
val_size = int(args['val_ratio'] * n_i)
unq, unq_cnt = np.unique(labelList_true[idx_batch[net_i][val_size:val_size + train_size]], return_counts=True)
tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))}
net_cls_counts_label[net_i] = tmp
unq1, unq_cnt1 = np.unique(labelList_true[idx_batch[net_i][:val_size]], return_counts=True)
tmp1 = {unq1[i]: unq_cnt1[i] for i in range(len(unq1))}
net_cls_counts_unlabel[net_i] = tmp1
local_sizes = []
for i in range(n_nets):
local_sizes.append(len(net_dataidx_map[i]))
local_sizes = np.array(local_sizes)
weights = local_sizes / np.sum(local_sizes)
return idx_batch
if __name__ == "__main__":
# Download and preprocess data
args= {'name': 'FedVATnew', 'isaml':0, 'uda':1 , 'dataset': 'cifar100',
'num_classes': 100, 'isclust': 0, 'alpha': 0.1, 'train_ratio': 0.2, 'val_ratio':0.8,
'shuffle':1, 'vat_ptb':0.0 , 'vat_consis':0.05, 'unsup_lamb':1, 'l2_lambda':10,
'bo': 50, 'thre': 0.3, 'comp': 'var', 'eta': 0.003, 'bs':64, 'unl_bs':128, 'train_ep':30,
'unsuptrain_ep':10, 'rounds':2000, 'ensize':100, 'size': 10, 'model': 'RES50', 'seed': 0,
'test_ratio': 0.0}
data = CIFAR100(read_data=False, args=args)