-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathPlotSensitivity.py
79 lines (66 loc) · 2.39 KB
/
PlotSensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
### Sensitivity heatmap
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from argparse import Namespace
import argparse
import Params
import scipy.stats.mstats
FONTSIZE=12
AXISFONT=10
MAX_ITERS = 25
THRESHOLD = 0.25
FAIL = Params.T + 100
def extrapolate_linearly(x, arr):
out = np.matrix(np.zeros((len(x),)))
out[0,0:len(arr)] = arr
increments = np.array([arr[-1] + (i+1)*arr[-1]/len(arr) for i in range(len(x) - len(arr))])
out[0,len(arr):] = increments
return (out)
def load_data():
x = np.arange(100,Params.T+1,100)
nvals = Params.lock_dl_n
kvals = range(2,11,1)
output = np.matrix(np.zeros((len(kvals), len(nvals))))
Params.reset_params()
for arg_list in Params.SensitivityParameters['Lock-v0']['decoding']:
P = Params.Params(arg_list)
collated = None
for i in range(1,MAX_ITERS+1):
P.iteration = i
fname = P.get_output_file_name()
try:
f = open(fname)
except Exception:
continue
tmp = np.loadtxt(f,delimiter=',',dtype=float)
if collated is None:
collated = np.matrix(tmp)
else:
collated = np.vstack((collated,tmp))
if collated is None:
continue
normalized = collated/x
val = np.percentile(normalized,50,axis=0)[-1]
output[kvals.index(P.num_cluster),nvals.index(P.n)] = val
return(output)
if __name__=='__main__':
mat = load_data()
plt.rc('font', size=AXISFONT)
plt.rc('font', family='sans-serif')
nvals = Params.lock_dl_n
kvals = range(2,11,1)
f = plt.figure(figsize=(mpl.rcParams['figure.figsize'][0]*1, mpl.rcParams['figure.figsize'][1]*0.5))
ax = f.add_subplot(111)
im = ax.imshow(mat,extent=[25,1025,11.5,1.5],aspect='auto')
f.colorbar(im)
# print([a.get_text() for a in ax.get_xticklabels()])
# plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
# rotation_mode="anchor")
# plt.setp(ax.get_yticklabels(), rotation=45, ha="right",
# rotation_mode="anchor")
ax.set_xlabel('Data Collection Parameter',fontsize=FONTSIZE)
ax.set_ylabel('Clustering Parameter',fontsize=FONTSIZE)
ax.set_title('Reward at 100k episodes',fontsize=FONTSIZE)
plt.savefig('./figs/sensitivity.pdf', format='pdf', dpi=100, bbox_inches='tight')
plt.close(f)