-
Notifications
You must be signed in to change notification settings - Fork 12
/
Params.py
executable file
·107 lines (87 loc) · 4.39 KB
/
Params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import itertools
def product_dict(**kwargs):
keys = kwargs.keys()
vals = kwargs.values()
for instance in itertools.product(*vals):
yield dict(zip(keys, instance))
class Params(object):
def __init__(self, dict=None):
### Defaults
self.iteration=1
self.env='Lock-v0'
self.horizon=2
self.tabular=False
self.episodes=100000
self.env_param_1=0.1
self.env_param_2=None
self.alg='oracleq'
self.model_type='linear'
self.lr=3e-2
self.epsfrac=0.1
self.conf=3e-2
self.n=100
self.num_cluster=3
for (k,v) in dict.items():
setattr(self,k,v)
def get_param_str(self):
string = "--iteration %s --env %s --horizon %s --episodes %s --env_param_1 %s --env_param_2 %s --alg %s --model_type %s --lr %s --epsfrac %s --conf %s --n %s --num_cluster %s " % (
str(self.iteration), self.env, str(self.horizon), str(self.episodes), str(self.env_param_1),
str(self.env_param_2), self.alg, self.model_type, str(self.lr), str(self.epsfrac),
str(self.conf), str(self.n), str(self.num_cluster))
if self.tabular:
string += " --tabular True"
else:
string += " --dimension %d" % (self.horizon)
return (string)
def __str__(self):
s = '%s_%s_model=%s_T=%s_H=%s_d=%s_ep1=%s_ep2=%s_lr=%s_epsfrac=%s_conf=%s_n=%s_cluster=%s_iteration=%s' % (
self.env, self.alg, self.model_type, str(self.episodes), str(self.horizon),
'0' if self.tabular else str(self.horizon), str(self.env_param_1),
str(self.env_param_2), str(self.lr), str(self.epsfrac), str(self.conf), str(self.n),
str(self.num_cluster), str(self.iteration))
return (s)
def get_output_file_name(self):
fname = "./data/%s.out" % (self.__str__())
return(fname)
#### TrainingTimes
T = 100000
LockEpisodes = {
'oracleq': [100000],
'decoding': [100000],
'qlearning': [100000],
'qlearning_fail': [1000000],
}
#### Horizons
LockHorizons = {
'oracleq' : [5,10,15,20,30,40,50],
'decoding': [5,10,15,20,30,40,50],
'qlearning': [5,10,15,20,30,40,50],
}
#### Noise levels
LockNoises = [None,0.1,0.2,0.3]
### OracleQ Params
oq_conf = np.logspace(-4,0,5)
oq_lr = np.logspace(-4,0,5)
### Decoding Params
lock_dl_n = range(100,1001,100)
lock_dl_num_clusters = [3]
### QLearning Params
ql_lr = np.logspace(-4,0,5)
ql_epsfrac = [0.0001,0.001,0.01,0.1,0.5]
Parameters = {}
SensitivityParameters = {}
def reset_params():
Parameters['Lock-v0'] = {}
Parameters['Lock-v0']['oracleq'] = product_dict(env=['Lock-v0'],horizon=LockHorizons['oracleq'],conf=oq_conf, episodes=LockEpisodes['oracleq'], lr=oq_lr, alg=['oracleq'], tabular=[True], env_param_1=[0.0, 0.1])
Parameters['Lock-v0']['decoding'] = product_dict(env=['Lock-v0'],horizon=LockHorizons['decoding'],n=lock_dl_n, num_clusters=lock_dl_num_clusters, episodes=LockEpisodes['decoding'], alg=['decoding'], model_type=['linear'], env_param_1=[0.0, 0.1])
Parameters['Lock-v0']['qlearning'] = product_dict(env=['Lock-v0'],horizon=LockHorizons['qlearning'],epsfrac=ql_epsfrac, episodes=LockEpisodes['qlearning'], lr=ql_lr, alg=['qlearning'], tabular=[True], env_param_1=[0.0, 0.1])
Parameters['Lock-v0']['qlearning_fail'] = product_dict(env=['Lock-v0'],horizon=[15,20],epsfrac=ql_epsfrac, episodes=LockEpisodes['qlearning_fail'], lr=ql_lr, alg=['qlearning'], tabular=[True], env_param_1=[0.0, 0.1])
Parameters['Lock-v1'] = {}
Parameters['Lock-v1']['decoding'] = product_dict(env=['Lock-v1'],horizon=LockHorizons['decoding'],n=lock_dl_n, num_clusters=lock_dl_num_clusters, episodes=LockEpisodes['decoding'], alg=['decoding'], model_type=['linear','nn'], env_param_1=[0.0, 0.1], env_param_2=LockNoises)
# Parameters['Lock-v2'] = {}
# Parameters['Lock-v2']['decoding'] = product_dict(env=['Lock-v2'],horizon=LockHorizons['decoding'],n=lock_dl_n, num_clusters=lock_dl_num_clusters, episodes=LockEpisodes['decoding'], alg=['decoding'], model_type=['nn','linear'], env_param_1=[0.0, 0.1], env_param_2=LockNoises)
SensitivityParameters['Lock-v0'] = {}
SensitivityParameters['Lock-v0']['decoding'] = product_dict(env=['Lock-v0'],horizon=[20],n=lock_dl_n,num_cluster=range(2,11,1),episodes=LockEpisodes['decoding'],alg=['decoding'],model_type=['linear'],env_param_1=[0.1])
return
reset_params()