-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathtest_basic.py
879 lines (752 loc) · 34.7 KB
/
test_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
# coding: utf-8
import filecmp
import numbers
import re
from copy import deepcopy
from os import getenv
from pathlib import Path
import numpy as np
import pytest
from scipy import sparse
from sklearn.datasets import dump_svmlight_file, load_svmlight_file
from sklearn.model_selection import train_test_split
import lightgbm as lgb
from lightgbm.compat import PANDAS_INSTALLED, pd_DataFrame, pd_Series
from .utils import dummy_obj, load_breast_cancer, mse_obj, np_assert_array_equal
def test_basic(tmp_path):
X_train, X_test, y_train, y_test = train_test_split(
*load_breast_cancer(return_X_y=True), test_size=0.1, random_state=2
)
feature_names = [f"Column_{i}" for i in range(X_train.shape[1])]
feature_names[1] = "a" * 1000 # set one name to a value longer than default buffer size
train_data = lgb.Dataset(X_train, label=y_train, feature_name=feature_names)
valid_data = train_data.create_valid(X_test, label=y_test)
params = {
"objective": "binary",
"metric": "auc",
"min_data": 10,
"num_leaves": 15,
"verbose": -1,
"num_threads": 1,
"max_bin": 255,
"gpu_use_dp": True,
}
bst = lgb.Booster(params, train_data)
bst.add_valid(valid_data, "valid_1")
for i in range(20):
bst.update()
if i % 10 == 0:
print(bst.eval_train(), bst.eval_valid())
assert train_data.get_feature_name() == feature_names
assert bst.current_iteration() == 20
assert bst.num_trees() == 20
assert bst.num_model_per_iteration() == 1
if getenv("TASK", "") != "cuda":
assert bst.lower_bound() == pytest.approx(-2.9040190126976606)
assert bst.upper_bound() == pytest.approx(3.3182142872462883)
tname = tmp_path / "svm_light.dat"
model_file = tmp_path / "model.txt"
bst.save_model(model_file)
pred_from_matr = bst.predict(X_test)
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f)
pred_from_file = bst.predict(tname)
np.testing.assert_allclose(pred_from_matr, pred_from_file)
# check saved model persistence
bst = lgb.Booster(params, model_file=model_file)
assert bst.feature_name() == feature_names
pred_from_model_file = bst.predict(X_test)
# we need to check the consistency of model file here, so test for exact equal
np.testing.assert_array_equal(pred_from_matr, pred_from_model_file)
# check early stopping is working. Make it stop very early, so the scores should be very close to zero
pred_parameter = {"pred_early_stop": True, "pred_early_stop_freq": 5, "pred_early_stop_margin": 1.5}
pred_early_stopping = bst.predict(X_test, **pred_parameter)
# scores likely to be different, but prediction should still be the same
np.testing.assert_array_equal(np.sign(pred_from_matr), np.sign(pred_early_stopping))
# test that shape is checked during prediction
bad_X_test = X_test[:, 1:]
bad_shape_error_msg = "The number of features in data*"
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg, bst.predict, bad_X_test)
np.testing.assert_raises_regex(
lgb.basic.LightGBMError, bad_shape_error_msg, bst.predict, sparse.csr_matrix(bad_X_test)
)
np.testing.assert_raises_regex(
lgb.basic.LightGBMError, bad_shape_error_msg, bst.predict, sparse.csc_matrix(bad_X_test)
)
with open(tname, "w+b") as f:
dump_svmlight_file(bad_X_test, y_test, f)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg, bst.predict, tname)
with open(tname, "w+b") as f:
dump_svmlight_file(X_test, y_test, f, zero_based=False)
np.testing.assert_raises_regex(lgb.basic.LightGBMError, bad_shape_error_msg, bst.predict, tname)
class NumpySequence(lgb.Sequence):
def __init__(self, ndarray, batch_size):
self.ndarray = ndarray
self.batch_size = batch_size
def __getitem__(self, idx):
# The simple implementation is just a single "return self.ndarray[idx]"
# The following is for demo and testing purpose.
if isinstance(idx, numbers.Integral):
return self.ndarray[idx]
elif isinstance(idx, slice):
if not (idx.step is None or idx.step == 1):
raise NotImplementedError("No need to implement, caller will not set step by now")
return self.ndarray[idx.start : idx.stop]
elif isinstance(idx, list):
return self.ndarray[idx]
else:
raise TypeError(f"Sequence Index must be an integer/list/slice, got {type(idx).__name__}")
def __len__(self):
return len(self.ndarray)
def _create_sequence_from_ndarray(data, num_seq, batch_size):
if num_seq == 1:
return NumpySequence(data, batch_size)
nrow = data.shape[0]
seqs = []
seq_size = nrow // num_seq
for start in range(0, nrow, seq_size):
end = min(start + seq_size, nrow)
seq = NumpySequence(data[start:end], batch_size)
seqs.append(seq)
return seqs
@pytest.mark.parametrize("sample_count", [11, 100, None])
@pytest.mark.parametrize("batch_size", [3, None])
@pytest.mark.parametrize("include_0_and_nan", [False, True])
@pytest.mark.parametrize("num_seq", [1, 3])
def test_sequence(tmpdir, sample_count, batch_size, include_0_and_nan, num_seq):
params = {"bin_construct_sample_cnt": sample_count}
nrow = 50
half_nrow = nrow // 2
ncol = 11
data = np.arange(nrow * ncol, dtype=np.float64).reshape((nrow, ncol))
if include_0_and_nan:
# whole col
data[:, 0] = 0
data[:, 1] = np.nan
# half col
data[:half_nrow, 3] = 0
data[:half_nrow, 2] = np.nan
data[half_nrow:-2, 4] = 0
data[:half_nrow, 4] = np.nan
X = data[:, :-1]
Y = data[:, -1]
npy_bin_fname = tmpdir / "data_from_npy.bin"
seq_bin_fname = tmpdir / "data_from_seq.bin"
# Create dataset from numpy array directly.
ds = lgb.Dataset(X, label=Y, params=params)
ds.save_binary(npy_bin_fname)
# Create dataset using Sequence.
seqs = _create_sequence_from_ndarray(X, num_seq, batch_size)
seq_ds = lgb.Dataset(seqs, label=Y, params=params)
seq_ds.save_binary(seq_bin_fname)
assert filecmp.cmp(npy_bin_fname, seq_bin_fname)
# Test for validation set.
# Select some random rows as valid data.
rng = np.random.default_rng() # Pass integer to set seed when needed.
valid_idx = (rng.random(10) * nrow).astype(np.int32)
valid_data = data[valid_idx, :]
valid_X = valid_data[:, :-1]
valid_Y = valid_data[:, -1]
valid_npy_bin_fname = tmpdir / "valid_data_from_npy.bin"
valid_seq_bin_fname = tmpdir / "valid_data_from_seq.bin"
valid_seq2_bin_fname = tmpdir / "valid_data_from_seq2.bin"
valid_ds = lgb.Dataset(valid_X, label=valid_Y, params=params, reference=ds)
valid_ds.save_binary(valid_npy_bin_fname)
# From Dataset constructor, with dataset from numpy array.
valid_seqs = _create_sequence_from_ndarray(valid_X, num_seq, batch_size)
valid_seq_ds = lgb.Dataset(valid_seqs, label=valid_Y, params=params, reference=ds)
valid_seq_ds.save_binary(valid_seq_bin_fname)
assert filecmp.cmp(valid_npy_bin_fname, valid_seq_bin_fname)
# From Dataset.create_valid, with dataset from sequence.
valid_seq_ds2 = seq_ds.create_valid(valid_seqs, label=valid_Y, params=params)
valid_seq_ds2.save_binary(valid_seq2_bin_fname)
assert filecmp.cmp(valid_npy_bin_fname, valid_seq2_bin_fname)
@pytest.mark.parametrize("num_seq", [1, 2])
def test_sequence_get_data(num_seq):
nrow = 20
ncol = 11
data = np.arange(nrow * ncol, dtype=np.float64).reshape((nrow, ncol))
X = data[:, :-1]
Y = data[:, -1]
seqs = _create_sequence_from_ndarray(data=X, num_seq=num_seq, batch_size=6)
seq_ds = lgb.Dataset(seqs, label=Y, params=None, free_raw_data=False).construct()
assert seq_ds.get_data() == seqs
used_indices = np.random.choice(np.arange(nrow), nrow // 3, replace=False)
subset_data = seq_ds.subset(used_indices).construct()
np.testing.assert_array_equal(subset_data.get_data(), X[sorted(used_indices)])
def test_chunked_dataset():
X_train, X_test, y_train, y_test = train_test_split(
*load_breast_cancer(return_X_y=True), test_size=0.1, random_state=2
)
chunk_size = X_train.shape[0] // 10 + 1
X_train = [X_train[i * chunk_size : (i + 1) * chunk_size, :] for i in range(X_train.shape[0] // chunk_size + 1)]
X_test = [X_test[i * chunk_size : (i + 1) * chunk_size, :] for i in range(X_test.shape[0] // chunk_size + 1)]
train_data = lgb.Dataset(X_train, label=y_train, params={"bin_construct_sample_cnt": 100})
valid_data = train_data.create_valid(X_test, label=y_test, params={"bin_construct_sample_cnt": 100})
train_data.construct()
valid_data.construct()
def test_chunked_dataset_linear():
X_train, X_test, y_train, y_test = train_test_split(
*load_breast_cancer(return_X_y=True), test_size=0.1, random_state=2
)
chunk_size = X_train.shape[0] // 10 + 1
X_train = [X_train[i * chunk_size : (i + 1) * chunk_size, :] for i in range(X_train.shape[0] // chunk_size + 1)]
X_test = [X_test[i * chunk_size : (i + 1) * chunk_size, :] for i in range(X_test.shape[0] // chunk_size + 1)]
params = {"bin_construct_sample_cnt": 100, "linear_tree": True}
train_data = lgb.Dataset(X_train, label=y_train, params=params)
valid_data = train_data.create_valid(X_test, label=y_test, params=params)
train_data.construct()
valid_data.construct()
def test_save_dataset_subset_and_load_from_file(tmp_path):
data = np.random.rand(100, 2)
params = {"max_bin": 50, "min_data_in_bin": 10}
ds = lgb.Dataset(data, params=params)
ds.subset([1, 2, 3, 5, 8]).save_binary(tmp_path / "subset.bin")
lgb.Dataset(tmp_path / "subset.bin", params=params).construct()
def test_subset_group():
rank_example_dir = Path(__file__).absolute().parents[2] / "examples" / "lambdarank"
X_train, y_train = load_svmlight_file(str(rank_example_dir / "rank.train"))
q_train = np.loadtxt(str(rank_example_dir / "rank.train.query"))
lgb_train = lgb.Dataset(X_train, y_train, group=q_train)
assert len(lgb_train.get_group()) == 201
subset = lgb_train.subset(list(range(10))).construct()
subset_group = subset.get_group()
assert len(subset_group) == 2
assert subset_group[0] == 1
assert subset_group[1] == 9
def test_add_features_throws_if_num_data_unequal():
X1 = np.random.random((100, 1))
X2 = np.random.random((10, 1))
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2).construct()
with pytest.raises(lgb.basic.LightGBMError):
d1.add_features_from(d2)
def test_add_features_throws_if_datasets_unconstructed():
X1 = np.random.random((100, 1))
X2 = np.random.random((100, 1))
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1).construct()
d2 = lgb.Dataset(X2)
d1.add_features_from(d2)
with pytest.raises(ValueError):
d1 = lgb.Dataset(X1)
d2 = lgb.Dataset(X2).construct()
d1.add_features_from(d2)
def test_add_features_equal_data_on_alternating_used_unused(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = [f"col_{i}" for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
d1name = tmp_path / "d1.txt"
d1._dump_text(d1name)
d = lgb.Dataset(X, feature_name=names).construct()
dname = tmp_path / "d.txt"
d._dump_text(dname)
with open(d1name, "rt") as d1f:
d1txt = d1f.read()
with open(dname, "rt") as df:
dtxt = df.read()
assert dtxt == d1txt
def test_add_features_same_booster_behaviour(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
names = [f"col_{i}" for i in range(5)]
for j in range(1, 5):
d1 = lgb.Dataset(X[:, :j], feature_name=names[:j]).construct()
d2 = lgb.Dataset(X[:, j:], feature_name=names[j:]).construct()
d1.add_features_from(d2)
d = lgb.Dataset(X, feature_name=names).construct()
y = np.random.random(100)
d1.set_label(y)
d.set_label(y)
b1 = lgb.Booster(train_set=d1)
b = lgb.Booster(train_set=d)
for _ in range(10):
b.update()
b1.update()
dname = tmp_path / "d.txt"
d1name = tmp_path / "d1.txt"
b1.save_model(d1name)
b.save_model(dname)
with open(dname, "rt") as df:
dtxt = df.read()
with open(d1name, "rt") as d1f:
d1txt = d1f.read()
assert dtxt == d1txt
def test_add_features_from_different_sources():
pd = pytest.importorskip("pandas")
n_row = 100
n_col = 5
X = np.random.random((n_row, n_col))
xxs = [X, sparse.csr_matrix(X), pd.DataFrame(X)]
names = [f"col_{i}" for i in range(n_col)]
seq = _create_sequence_from_ndarray(X, 1, 30)
seq_ds = lgb.Dataset(seq, feature_name=names, free_raw_data=False).construct()
npy_list_ds = lgb.Dataset(
[X[: n_row // 2, :], X[n_row // 2 :, :]], feature_name=names, free_raw_data=False
).construct()
immergeable_dds = [seq_ds, npy_list_ds]
for x_1 in xxs:
# test that method works even with free_raw_data=True
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=True).construct()
d2 = lgb.Dataset(x_1, feature_name=names, free_raw_data=True).construct()
d1.add_features_from(d2)
assert d1.data is None
# test that method works but sets raw data to None in case of immergeable data types
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=False).construct()
for d2 in immergeable_dds:
d1.add_features_from(d2)
assert d1.data is None
# test that method works for different data types
d1 = lgb.Dataset(x_1, feature_name=names, free_raw_data=False).construct()
res_feature_names = deepcopy(names)
for idx, x_2 in enumerate(xxs, 2):
original_type = type(d1.get_data())
d2 = lgb.Dataset(x_2, feature_name=names, free_raw_data=False).construct()
d1.add_features_from(d2)
assert isinstance(d1.get_data(), original_type)
assert d1.get_data().shape == (n_row, n_col * idx)
res_feature_names += [f"D{idx}_{name}" for name in names]
assert d1.feature_name == res_feature_names
def test_add_features_does_not_fail_if_initial_dataset_has_zero_informative_features(capsys):
arr_a = np.zeros((100, 1), dtype=np.float32)
arr_b = np.random.normal(size=(100, 5))
dataset_a = lgb.Dataset(arr_a).construct()
expected_msg = (
"[LightGBM] [Warning] There are no meaningful features which satisfy "
"the provided configuration. Decreasing Dataset parameters min_data_in_bin "
"or min_data_in_leaf and re-constructing Dataset might resolve this warning.\n"
)
log_lines = capsys.readouterr().out
assert expected_msg in log_lines
dataset_b = lgb.Dataset(arr_b).construct()
original_handle = dataset_a._handle.value
dataset_a.add_features_from(dataset_b)
assert dataset_a.num_feature() == 6
assert dataset_a.num_data() == 100
assert dataset_a._handle.value == original_handle
def test_cegb_affects_behavior(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = [f"col_{i}" for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
base = lgb.Booster(train_set=ds)
for _ in range(10):
base.update()
basename = tmp_path / "basename.txt"
base.save_model(basename)
with open(basename, "rt") as f:
basetxt = f.read()
# Set extremely harsh penalties, so CEGB will block most splits.
cases = [
{"cegb_penalty_feature_coupled": [50, 100, 10, 25, 30]},
{"cegb_penalty_feature_lazy": [1, 2, 3, 4, 5]},
{"cegb_penalty_split": 1},
]
for case in cases:
booster = lgb.Booster(train_set=ds, params=case)
for _ in range(10):
booster.update()
casename = tmp_path / "casename.txt"
booster.save_model(casename)
with open(casename, "rt") as f:
casetxt = f.read()
assert basetxt != casetxt
def test_cegb_scaling_equalities(tmp_path):
X = np.random.random((100, 5))
X[:, [1, 3]] = 0
y = np.random.random(100)
names = [f"col_{i}" for i in range(5)]
ds = lgb.Dataset(X, feature_name=names).construct()
ds.set_label(y)
# Compare pairs of penalties, to ensure scaling works as intended
pairs = [
(
{"cegb_penalty_feature_coupled": [1, 2, 1, 2, 1]},
{"cegb_penalty_feature_coupled": [0.5, 1, 0.5, 1, 0.5], "cegb_tradeoff": 2},
),
(
{"cegb_penalty_feature_lazy": [0.01, 0.02, 0.03, 0.04, 0.05]},
{"cegb_penalty_feature_lazy": [0.005, 0.01, 0.015, 0.02, 0.025], "cegb_tradeoff": 2},
),
({"cegb_penalty_split": 1}, {"cegb_penalty_split": 2, "cegb_tradeoff": 0.5}),
]
for p1, p2 in pairs:
booster1 = lgb.Booster(train_set=ds, params=p1)
booster2 = lgb.Booster(train_set=ds, params=p2)
for _ in range(10):
booster1.update()
booster2.update()
p1name = tmp_path / "p1.txt"
# Reset booster1's parameters to p2, so the parameter section of the file matches.
booster1.reset_parameter(p2)
booster1.save_model(p1name)
with open(p1name, "rt") as f:
p1txt = f.read()
p2name = tmp_path / "p2.txt"
booster2.save_model(p2name)
with open(p2name, "rt") as f:
p2txt = f.read()
assert p1txt == p2txt
def test_consistent_state_for_dataset_fields():
def check_asserts(data):
np.testing.assert_allclose(data.label, data.get_label())
np.testing.assert_allclose(data.label, data.get_field("label"))
assert not np.isnan(data.label[0])
assert not np.isinf(data.label[1])
np.testing.assert_allclose(data.weight, data.get_weight())
np.testing.assert_allclose(data.weight, data.get_field("weight"))
assert not np.isnan(data.weight[0])
assert not np.isinf(data.weight[1])
np.testing.assert_allclose(data.init_score, data.get_init_score())
np.testing.assert_allclose(data.init_score, data.get_field("init_score"))
assert not np.isnan(data.init_score[0])
assert not np.isinf(data.init_score[1])
assert np.all(np.isclose([data.label[0], data.weight[0], data.init_score[0]], data.label[0]))
assert data.label[1] == pytest.approx(data.weight[1])
assert data.feature_name == data.get_feature_name()
X, y = load_breast_cancer(return_X_y=True)
sequence = np.ones(y.shape[0])
sequence[0] = np.nan
sequence[1] = np.inf
feature_names = [f"f{i}" for i in range(X.shape[1])]
lgb_data = lgb.Dataset(X, sequence, weight=sequence, init_score=sequence, feature_name=feature_names).construct()
check_asserts(lgb_data)
lgb_data = lgb.Dataset(X, y).construct()
lgb_data.set_label(sequence)
lgb_data.set_weight(sequence)
lgb_data.set_init_score(sequence)
lgb_data.set_feature_name(feature_names)
check_asserts(lgb_data)
def test_dataset_construction_overwrites_user_provided_metadata_fields():
X = np.array([[1.0, 2.0], [3.0, 4.0]])
position = np.array([0.0, 1.0], dtype=np.float32)
if getenv("TASK", "") == "cuda":
position = None
dtrain = lgb.Dataset(
X,
params={"min_data_in_bin": 1, "min_data_in_leaf": 1, "verbosity": -1},
group=[1, 1],
init_score=[0.312, 0.708],
label=[1, 2],
position=position,
weight=[0.5, 1.5],
)
# unconstructed, get_* methods should return whatever was provided
assert dtrain.group == [1, 1]
assert dtrain.get_group() == [1, 1]
assert dtrain.init_score == [0.312, 0.708]
assert dtrain.get_init_score() == [0.312, 0.708]
assert dtrain.label == [1, 2]
assert dtrain.get_label() == [1, 2]
if getenv("TASK", "") != "cuda":
np_assert_array_equal(dtrain.position, np.array([0.0, 1.0], dtype=np.float32), strict=True)
np_assert_array_equal(dtrain.get_position(), np.array([0.0, 1.0], dtype=np.float32), strict=True)
assert dtrain.weight == [0.5, 1.5]
assert dtrain.get_weight() == [0.5, 1.5]
# before construction, get_field() should raise an exception
for field_name in ["group", "init_score", "label", "position", "weight"]:
with pytest.raises(Exception, match=f"Cannot get {field_name} before construct Dataset"):
dtrain.get_field(field_name)
# constructed, get_* methods should return numpy arrays, even when the provided
# input was a list of floats or ints
dtrain.construct()
expected_group = np.array([1, 1], dtype=np.int32)
np_assert_array_equal(dtrain.group, expected_group, strict=True)
np_assert_array_equal(dtrain.get_group(), expected_group, strict=True)
# get_field("group") returns a numpy array with boundaries, instead of size
np_assert_array_equal(dtrain.get_field("group"), np.array([0, 1, 2], dtype=np.int32), strict=True)
expected_init_score = np.array(
[0.312, 0.708],
)
np_assert_array_equal(dtrain.init_score, expected_init_score, strict=True)
np_assert_array_equal(dtrain.get_init_score(), expected_init_score, strict=True)
np_assert_array_equal(dtrain.get_field("init_score"), expected_init_score, strict=True)
expected_label = np.array([1, 2], dtype=np.float32)
np_assert_array_equal(dtrain.label, expected_label, strict=True)
np_assert_array_equal(dtrain.get_label(), expected_label, strict=True)
np_assert_array_equal(dtrain.get_field("label"), expected_label, strict=True)
if getenv("TASK", "") != "cuda":
expected_position = np.array([0.0, 1.0], dtype=np.float32)
np_assert_array_equal(dtrain.position, expected_position, strict=True)
np_assert_array_equal(dtrain.get_position(), expected_position, strict=True)
# NOTE: "position" is converted to int32 on the C++ side
np_assert_array_equal(dtrain.get_field("position"), np.array([0.0, 1.0], dtype=np.int32), strict=True)
expected_weight = np.array([0.5, 1.5], dtype=np.float32)
np_assert_array_equal(dtrain.weight, expected_weight, strict=True)
np_assert_array_equal(dtrain.get_weight(), expected_weight, strict=True)
np_assert_array_equal(dtrain.get_field("weight"), expected_weight, strict=True)
def test_choose_param_value():
original_params = {
"local_listen_port": 1234,
"port": 2222,
"metric": "auc",
"num_trees": 81,
"n_iter": 13,
}
# should resolve duplicate aliases, and prefer the main parameter
params = lgb.basic._choose_param_value(
main_param_name="local_listen_port", params=original_params, default_value=5555
)
assert params["local_listen_port"] == 1234
assert "port" not in params
# should choose the highest priority alias and set that value on main param
# if only aliases are used
params = lgb.basic._choose_param_value(main_param_name="num_iterations", params=params, default_value=17)
assert params["num_iterations"] == 13
assert "num_trees" not in params
assert "n_iter" not in params
# should use the default if main param and aliases are missing
params = lgb.basic._choose_param_value(main_param_name="learning_rate", params=params, default_value=0.789)
assert params["learning_rate"] == 0.789
# all changes should be made on copies and not modify the original
expected_params = {
"local_listen_port": 1234,
"port": 2222,
"metric": "auc",
"num_trees": 81,
"n_iter": 13,
}
assert original_params == expected_params
def test_choose_param_value_preserves_nones():
# preserves None found for main param and still removes aliases
params = lgb.basic._choose_param_value(
main_param_name="num_threads",
params={"num_threads": None, "n_jobs": 4, "objective": "regression"},
default_value=2,
)
assert params == {"num_threads": None, "objective": "regression"}
# correctly chooses value when only an alias is provided
params = lgb.basic._choose_param_value(
main_param_name="num_threads", params={"n_jobs": None, "objective": "regression"}, default_value=2
)
assert params == {"num_threads": None, "objective": "regression"}
# adds None if that's given as the default and param not found
params = lgb.basic._choose_param_value(
main_param_name="min_data_in_leaf", params={"objective": "regression"}, default_value=None
)
assert params == {"objective": "regression", "min_data_in_leaf": None}
@pytest.mark.parametrize("objective_alias", lgb.basic._ConfigAliases.get("objective"))
def test_choose_param_value_objective(objective_alias):
# If callable is found in objective
params = {objective_alias: dummy_obj}
params = lgb.basic._choose_param_value(main_param_name="objective", params=params, default_value=None)
assert params["objective"] == dummy_obj
# Value in params should be preferred to the default_value passed from keyword arguments
params = {objective_alias: dummy_obj}
params = lgb.basic._choose_param_value(main_param_name="objective", params=params, default_value=mse_obj)
assert params["objective"] == dummy_obj
# None of objective or its aliases in params, but default_value is callable.
params = {}
params = lgb.basic._choose_param_value(main_param_name="objective", params=params, default_value=mse_obj)
assert params["objective"] == mse_obj
@pytest.mark.parametrize("collection", ["1d_np", "2d_np", "pd_float", "pd_str", "1d_list", "2d_list"])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_list_to_1d_numpy(collection, dtype):
collection2y = {
"1d_np": np.random.rand(10),
"2d_np": np.random.rand(10, 1),
"pd_float": np.random.rand(10),
"pd_str": ["a", "b"],
"1d_list": [1] * 10,
"2d_list": [[1], [2]],
}
y = collection2y[collection]
if collection.startswith("pd"):
if not PANDAS_INSTALLED:
pytest.skip("pandas is not installed")
else:
y = pd_Series(y)
if isinstance(y, np.ndarray) and len(y.shape) == 2:
with pytest.warns(UserWarning, match="column-vector"):
lgb.basic._list_to_1d_numpy(y, dtype=np.float32, name="list")
return
elif isinstance(y, list) and isinstance(y[0], list):
with pytest.raises(TypeError):
lgb.basic._list_to_1d_numpy(y, dtype=np.float32, name="list")
return
elif isinstance(y, pd_Series) and y.dtype == object:
with pytest.raises(ValueError):
lgb.basic._list_to_1d_numpy(y, dtype=np.float32, name="list")
return
result = lgb.basic._list_to_1d_numpy(y, dtype=dtype, name="list")
assert result.size == 10
assert result.dtype == dtype
@pytest.mark.parametrize("init_score_type", ["array", "dataframe", "list"])
def test_init_score_for_multiclass_classification(init_score_type):
init_score = [[i * 10 + j for j in range(3)] for i in range(10)]
if init_score_type == "array":
init_score = np.array(init_score)
elif init_score_type == "dataframe":
if not PANDAS_INSTALLED:
pytest.skip("Pandas is not installed.")
init_score = pd_DataFrame(init_score)
data = np.random.rand(10, 2)
ds = lgb.Dataset(data, init_score=init_score).construct()
np.testing.assert_equal(ds.get_field("init_score"), init_score)
np.testing.assert_equal(ds.init_score, init_score)
def test_smoke_custom_parser(tmp_path):
data_path = Path(__file__).absolute().parents[2] / "examples" / "binary_classification" / "binary.train"
parser_config_file = tmp_path / "parser.ini"
with open(parser_config_file, "w") as fout:
fout.write('{"className": "dummy", "id": "1"}')
data = lgb.Dataset(data_path, params={"parser_config_file": parser_config_file})
with pytest.raises(
lgb.basic.LightGBMError, match="Cannot find parser class 'dummy', please register first or check config format"
):
data.construct()
def test_param_aliases():
aliases = lgb.basic._ConfigAliases.aliases
assert isinstance(aliases, dict)
assert len(aliases) > 100
assert all(isinstance(i, list) for i in aliases.values())
assert all(len(i) >= 1 for i in aliases.values())
assert all(k in v for k, v in aliases.items())
assert lgb.basic._ConfigAliases.get("config", "task") == {"config", "config_file", "task", "task_type"}
assert lgb.basic._ConfigAliases.get_sorted("min_data_in_leaf") == [
"min_data_in_leaf",
"min_data",
"min_samples_leaf",
"min_child_samples",
"min_data_per_leaf",
]
def _bad_gradients(preds, _):
return np.random.randn(len(preds) + 1), np.random.rand(len(preds) + 1)
def _good_gradients(preds, _):
return np.random.randn(*preds.shape), np.random.rand(*preds.shape)
def test_custom_objective_safety():
nrows = 100
X = np.random.randn(nrows, 5)
y_binary = np.arange(nrows) % 2
classes = [0, 1, 2]
nclass = len(classes)
y_multiclass = np.arange(nrows) % nclass
ds_binary = lgb.Dataset(X, y_binary).construct()
ds_multiclass = lgb.Dataset(X, y_multiclass).construct()
bad_bst_binary = lgb.Booster({"objective": "none"}, ds_binary)
good_bst_binary = lgb.Booster({"objective": "none"}, ds_binary)
bad_bst_multi = lgb.Booster({"objective": "none", "num_class": nclass}, ds_multiclass)
good_bst_multi = lgb.Booster({"objective": "none", "num_class": nclass}, ds_multiclass)
good_bst_binary.update(fobj=_good_gradients)
with pytest.raises(ValueError, match=re.escape("number of models per one iteration (1)")):
bad_bst_binary.update(fobj=_bad_gradients)
good_bst_multi.update(fobj=_good_gradients)
with pytest.raises(ValueError, match=re.escape(f"number of models per one iteration ({nclass})")):
bad_bst_multi.update(fobj=_bad_gradients)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("feature_name", [["x1", "x2"], "auto"])
def test_no_copy_when_single_float_dtype_dataframe(dtype, feature_name):
pd = pytest.importorskip("pandas")
X = np.random.rand(10, 2).astype(dtype)
df = pd.DataFrame(X)
built_data = lgb.basic._data_from_pandas(
data=df, feature_name=feature_name, categorical_feature="auto", pandas_categorical=None
)[0]
assert built_data.dtype == dtype
assert np.shares_memory(X, built_data)
@pytest.mark.parametrize("feature_name", [["x1"], [42], "auto"])
@pytest.mark.parametrize("categories", ["seen", "unseen"])
def test_categorical_code_conversion_doesnt_modify_original_data(feature_name, categories):
pd = pytest.importorskip("pandas")
X = np.random.choice(["a", "b"], 100).reshape(-1, 1)
column_name = "a" if feature_name == "auto" else feature_name[0]
df = pd.DataFrame(X.copy(), columns=[column_name], dtype="category")
if categories == "seen":
pandas_categorical = [["a", "b"]]
else:
pandas_categorical = [["a"]]
data = lgb.basic._data_from_pandas(
data=df,
feature_name=feature_name,
categorical_feature="auto",
pandas_categorical=pandas_categorical,
)[0]
# check that the original data wasn't modified
np.testing.assert_equal(df[column_name], X[:, 0])
# check that the built data has the codes
if categories == "seen":
# if all categories were seen during training we just take the codes
codes = df[column_name].cat.codes
else:
# if we only saw 'a' during training we just replace its code
# and leave the rest as nan
a_code = df[column_name].cat.categories.get_loc("a")
codes = np.where(df[column_name] == "a", a_code, np.nan)
np.testing.assert_equal(codes, data[:, 0])
@pytest.mark.parametrize("min_data_in_bin", [2, 10])
def test_feature_num_bin(min_data_in_bin):
X = np.vstack(
[
np.random.rand(100),
np.array([1, 2] * 50),
np.array([0, 1, 2] * 33 + [0]),
np.array([1, 2] * 49 + 2 * [np.nan]),
np.zeros(100),
np.random.choice([0, 1], 100),
]
).T
n_continuous = X.shape[1] - 1
feature_name = [f"x{i}" for i in range(n_continuous)] + ["cat1"]
ds_kwargs = {
"params": {"min_data_in_bin": min_data_in_bin},
"categorical_feature": [n_continuous], # last feature
}
ds = lgb.Dataset(X, feature_name=feature_name, **ds_kwargs).construct()
expected_num_bins = [
100 // min_data_in_bin + 1, # extra bin for zero
3, # 0, 1, 2
3, # 0, 1, 2
4, # 0, 1, 2 + nan
0, # unused
3, # 0, 1 + nan
]
actual_num_bins = [ds.feature_num_bin(i) for i in range(X.shape[1])]
assert actual_num_bins == expected_num_bins
# test using defined feature names
bins_by_name = [ds.feature_num_bin(name) for name in feature_name]
assert bins_by_name == expected_num_bins
# test using default feature names
ds_no_names = lgb.Dataset(X, **ds_kwargs).construct()
default_names = [f"Column_{i}" for i in range(X.shape[1])]
bins_by_default_name = [ds_no_names.feature_num_bin(name) for name in default_names]
assert bins_by_default_name == expected_num_bins
# check for feature indices outside of range
num_features = X.shape[1]
with pytest.raises(
lgb.basic.LightGBMError,
match=(
f"Tried to retrieve number of bins for feature index {num_features}, "
f"but the valid feature indices are \\[0, {num_features - 1}\\]."
),
):
ds.feature_num_bin(num_features)
def test_feature_num_bin_with_max_bin_by_feature():
X = np.random.rand(100, 3)
max_bin_by_feature = np.random.randint(3, 30, size=X.shape[1])
ds = lgb.Dataset(X, params={"max_bin_by_feature": max_bin_by_feature}).construct()
actual_num_bins = [ds.feature_num_bin(i) for i in range(X.shape[1])]
np.testing.assert_equal(actual_num_bins, max_bin_by_feature)
def test_set_leaf_output():
X, y = load_breast_cancer(return_X_y=True)
ds = lgb.Dataset(X, y)
bst = lgb.Booster({"num_leaves": 2}, ds)
bst.update()
y_pred = bst.predict(X)
for leaf_id in range(2):
leaf_output = bst.get_leaf_output(tree_id=0, leaf_id=leaf_id)
bst.set_leaf_output(tree_id=0, leaf_id=leaf_id, value=leaf_output + 1)
np.testing.assert_allclose(bst.predict(X), y_pred + 1)
def test_feature_names_are_set_correctly_when_no_feature_names_passed_into_Dataset():
ds = lgb.Dataset(
data=np.random.randn(100, 3),
)
assert ds.construct().feature_name == ["Column_0", "Column_1", "Column_2"]