
How do we solve the issue of having
dependencies to AppSource Apps

was “Discuss NuGet packages for Business Central and DevOps”

The problem!

• ISV’s or VARs developing apps with dependencies on AppSource apps
cannot easily build and run automated testing for their app

• Partners have to spend time on providing and gathering these
packages for their DevOps solution

• On-premises customers using AppSource apps need to go through the
same hardship

• Partners also need the objects for AppSource apps in their developer
license in order to work with it

Design with the
end-goal in
mind

This presentation doesn’t include any promises

everything are ideas and suggestions

Nirvana aka. The GOAL!

• “All AppSource apps” are available in a public Nuget server as runtime packages for all
compatible BC versions.

• The NuGet server is owned and hosted by Microsoft and only Microsoft can deploy apps
to the server (i.e. trusted)

• All NuGet packages have a full dependency tree included (of other AppSource apps, Base
app, other Microsoft apps and platform)

• Partners can have private NuGet servers, if they elect to not be part of the public server

• NuGet packages can be used for on-premises as well as for your DevOps setup

• CRONUS license can run all AppSource apps

• With every new minor of Business Central, all NuGet packages are updated with an
additional runtime package (if compatible)

• With every new submission of apps to AppSource, a new NuGet package is added with
the new version number (for all BC versions)

With this, we could…

If you add a dependency to an AppSource app to your app.json, your
DevOps setup should be able to resolve this automatically (including all
dependencies, if a compatible version isn’t already installed. These
apps can also be force-updated)

You can spin up a Business Central NST on-premises (or container) with
an empty database and just install any AppSource app, which then will
pull all dependencies along

You can upgrade Business Central on-premises (or container) to a new
version of an AppSource App (incl. all dependencies + platform)

There’s a long way… - let’s break it down 1 level

1. Get AppSource ranges in the CRONUS license…

2. Define NuGet package standard format

3. Allow BcContainerHelper, AL-Go and other DevOps solutions to support using this NuGet
package format (both from private (partner) and public (MS) NuGet servers)

4. Add support in ALC to create runtime packages without the NST (will make generation of
runtime packages possible – without this, every version takes ~10 minutes)

5. Allow BcContainerHelper, AL-Go and other DevOps solutions to support delivering to this
NuGet package format (to a private or public NuGet Server)

6. Be able to determine runtime package emit version from BC application version and vice versa

7. Add support for properties in app.json for identifying home repo and generated by

8. Add a ResourceExposurePolicy to allow the app to be shared as NuGet (Fail validation if
dependent apps are not allowed to be exposed?)

9. Generate NuGet packages when apps are updated in AppSource

10. Update NuGet packages when BC versions are created

1. Get the AppSource app range in CRONUS

• We will try to make this happen in 2023 wave 1
• Obviously, we need LT approval for this, but it is really a small task for us

2. Define NuGet package standard format

• I have created a proof-of-concept prototype in BcContainerHelper

• A discussion on the topic is here:
• https://github.com/microsoft/AL-Go/issues/261

• https://github.com/microsoft/AL-Go/issues/262

https://github.com/microsoft/AL-Go/issues/261
https://github.com/microsoft/AL-Go/issues/262

3. Use BcNuGet packages

• Proof-Of-Concept functions has been added to ContainerHelper
• Publish-BcNuGetPackageToContainer

• Get-BcNuGetPackage

4. Use ALC to create runtime packages

• Speed up process and save the environment

Today, easy to code, but time consuming!
and… - which versions are necessary?

$packages = @{}

'20.0','20.1','20.2','20.3','20.4','20.5','21.0','21.1' | % {

$artifactUrl = Get-BCArtifactUrl -country us -version $_

$destinationFolder = Convert-BcAppsToRuntimePackages `

-containerName cnvt `

-imageName "" `

-artifactUrl $artifactUrl `

-licenseFile $LicenseFile `

-apps @("C:\...BingMaps.AppSource_3.1.254.0.app")

$packages."$_" = $destinationFolder

}

Takes approx. 1 hour (45 minutes if artifacts and generic image is cached)

If all runtime appsource apps…

• Should have a runtime packages generated for an average of 6 BC
versions – this would take 2250 compute hours (~94 days)
• Partners would have to pay for this

• With the optimized runtime package generation, it would be more like a few
hours

• Every month, with a new BC version, you would add 375 hours (~15
days) of compute time
• Partners would have to pay for this

• With the optimized runtime package generation, this would be minutes

5. Generate BcNuGet packages

• Proof-Of-Concept functions has been added to ContainerHelper
• New-BcNuGetPackage

• Push-BcNuGetPackage

	Slide 1: How do we solve the issue of having dependencies to AppSource Apps
	Slide 2: The problem!
	Slide 3: Design with the end-goal in mind
	Slide 4: Nirvana aka. The GOAL!
	Slide 5: With this, we could…
	Slide 6: There’s a long way… - let’s break it down 1 level
	Slide 7: 1. Get the AppSource app range in CRONUS
	Slide 8: 2. Define NuGet package standard format
	Slide 9: 3. Use BcNuGet packages
	Slide 10: 4. Use ALC to create runtime packages
	Slide 11: Today, easy to code, but time consuming! and… - which versions are necessary?
	Slide 12: If all runtime appsource apps…
	Slide 13: 5. Generate BcNuGet packages

