-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput-deck
310 lines (310 loc) · 16.3 KB
/
input-deck
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#########################################################################
#########################################################################
## ##
## Angular Momentum Model Of Relativistic Electron beam (AMoRE) code ##
## ##
## INPUT DECK ##
## ##
## Code units : ##
## - microns for space ##
## - keV for energies ##
## - fs for time ##
## ##
## Initial commit written by Michaël J TOUATI - Oct. 2015 ##
## ##
#########################################################################
#########################################################################
#
#########################################################################
#########################################################################
## ##
## Simulation options and parameters : ##
## ##
## simu = Simulation name ##
## (less than 60 characters without spaces or punctuations ##
## except - or _) ##
## ##
## N_threads = Number of threads used by OPEN_MP ##
## if 0, the maximum possible value is used ##
## ##
## hll_order = Order of HLL Riemann solvers for advection terms ##
## in space and kinetic energy (Electric field) ##
## (first order : 1 or second order : 2) ##
## ##
## implicit_coll = Collisional slowing down of fast electrons can be ##
## computed : implicitely (.true.) ##
## or explicitely (.false.) ##
## It is highly recommended in the case of an electron ##
## beam transport in a dense plasma! ##
## cfl = Courant-Friedrichs-Lewy condition ##
## (must be lower than 1!) ##
## ##
## bi_temp = .false. if T_i = T_e during all the simulation ##
## .true. if not ##
## ##
## magnetic_diff = the magnetic field diffusion can be ##
## computed : (.true.) ##
## or not (.false.) ##
## ##
## backward = 2 to take into account the specular reflection of ##
## fast electrons at the target rear side or ##
## 1 to let them escape from the target rear side ##
## ##
## irradiated_side_refluxing = .true. to take into account the ##
## specular reflection of fast ##
## electrons when they reach the ##
## target irradiated side ##
## (needs backward = 2) or ##
## .false. to let them escape from the ##
## target irradiated side ##
## ##
## Kalpha = the density of Kalpha photons emitted from the target ##
## can be : computed (.true.) ##
## or not (.false.) ##
## ##
## L_t (fs) = simulation time ##
## ##
## Delta_t_diag = results are saved in text files in diag/ ##
## every Delta_t_diag in fs ##
## ##
## d_z (microns) = spatial cell dimension ##
## in the longitudinal direction (z-axis) ##
## ##
## d_x (microns) = spatial cell dimension ##
## in the transverse direction (x-axis) ##
## ##
## L_z (microns) = simulation box length on z-axis ##
## The electron beam is injected at z = 0 ##
## such that 0 < z < L_z ##
## ##
## L_x (microns) = simulation box length on x-axis ##
## The electron beam is centered at x = 0 ##
## such that -L_x/2 < x < L_x/2 ##
## ##
## d_eps (keV) = kinetic energy cell dimension ##
## ##
## eps_min (keV) = minimal kinetic energy of fast electrons ##
## 10 keV is the smallest possible value ##
## ##
## L_eps (keV) = maximal kinetic energy of fast electrons ##
## ##
#########################################################################
#########################################################################
#
#simu NJP-Academic-case
#
#N_threads 4
#
#hll_order 2
#
#implicit_coll .true.
#
#cfl 0.9
#
#bi_temp .false.
#
#magnetic_diff .true.
#
#backward 1
#
#irradiated_side_refluxing .false.
#
#Kalpha .false.
#
#L_t 3500.
#
#Delta_t_diag 35.
#
#d_z 1.
#
#d_x 1.
#
#L_z 100.
#
#L_x 100.
#
#d_eps 5.
#
#eps_min 20.
#
#L_eps 1.5e3
#
#########################################################################
#########################################################################
## ##
## Relativistic Electron Beam Parameters : ##
## f(x,z=0,eps,theta,t) = N0 fx(x) fz(-vb.t) feps(eps) ftheta(theta) ##
## ##
## E_tot (Joules) = Total Beam kinetic energy ##
## { N0 = E_tot / < eps > ##
## with < eps > mean kinetic energy of fast e- } ##
## ##
## Delta_t (fs) = Gaussian Beam longitudinal distribution Full ##
## Width at Half Maximum (FWHM) ##
## { fz(z-vb.t) = exp[ -(z-vb.t)^2 / 2.sigma_t^2 ] ##
## / sqrt(2 Pi sigma_t^2) ##
## with sigma_t = Delta_t / sqrt(8.ln(2)) } ##
## ##
## Delta_r (microns) = Gaussian Beam transverse distribution FWHM ##
## { fx(x) = exp[-x^2/2.sigma_x^2] ##
## / sqrt(2 Pi sigma_x^2) ##
## with sigma_x = Delta_x / sqrt(8.ln(2)) } ##
## ##
## spectrum = 1 if Gaussian, 2 : Boltzmannian, 3 : Quasi 2-temperature ##
## 4 : Modified quasi 2-temperature or 5 : tabulated ##
## ##
## if Gaussian : eps0 (keV) = mean kinetic energy of fast e- ##
## sigma_eps (keV) = Standard deviation ##
## { feps(eps) = exp[-eps^2/2.sigma_eps^2] ##
## / sqrt(2 Pi sigma_eps^2) } ##
## if Boltzmannian : Tb0 (keV) = mean kinetic energy of fast e- ##
## { feps(eps) = exp[-eps/Tb0] / Tb0 } ##
## ##
## if Quasi 2-temperature : Tb0 (keV) = 1st parameter ##
## Tb1 (keV) = 2nd parameter ##
## alpha1 () = 3rd parameter ##
## { feps(eps) = exp[-eps/Tb0] / eps ##
## + alpha1 exp[-eps/Tb1] } ##
## ##
## if Modified quasi 2-temperature : Tb0 (keV) = 1st parameter ##
## eps0 (keV) = 2nd parameter ##
## eps1 (keV) = 3rd parameter ##
## alpha0 () = 4th parameter ##
## Tb1 (keV) = 5th parameter ##
## alpha1 () = 6th parameter ##
## { feps(eps) = (eps1/eps)*(eps0/eps)^alpha0 * exp[-eps/Tb0] ##
## + alpha1 exp[-eps/Tb1] } ##
## ##
## if Tabulated : the file spectrum_tab.dat with a header (1 line) and ##
## the two columns E (MeV) f(E) (/MeV) is interpolated ##
## ##
## angle0 (degrees) = mean angle between the z-axis and the fast e- ##
## beam propagation direction at ~ the beam borders ##
## ##
## Delta_theta (degrees) = Gaussian beam angular distribution function ##
## FWHM ##
## { ftheta(theta) = exp[-(theta-theta0)^2 ##
## /2.sigma_theta^2] ##
## / sqrt(2 Pi sigma_theta^2) ##
## with sigma_theta = Delta_theta / sqrt(8.ln(2)) ##
## and theta0(x) = angle0 tanh[x/sigma_x] } ##
## ##
#########################################################################
#########################################################################
#
#E_tot 10.
#
#Delta_t 1177.41
#
#Delta_r 23.5482
#
#spectrum 1
#
#eps0 1000.
#
#sigma_eps 50.
#
#Tb0 3.e2
#
#alpha1 1.
#
#Tb1 30.
#
#alpha0 1.5
#
#eps1 3.e2
#
#angle0 0.
#
#Delta_theta 0.
#
#########################################################################
#########################################################################
## ##
## Material properties : ##
## ##
## Material = 1 for a plasma or ##
## 2 for a metal at ambiant conditions (20° Celsius) ##
## ##
## tabulated_resistivity = A tabulated electrical resistivity ##
## may be used (.true.) or not (.false.) ##
## if (.true.) the file 'resistivity_tab.dat' ##
## must be filled with data provided by the ##
## user (magnetic_diff and bi_temp must be set ##
## .false. in this case) ##
## ##
## if plasma : Z0 = Mean Atomic Number (ex. 1. for H) ##
## A0 = Mean Atomic Weight (ex. 1.01 for H) ##
## tabulated_plasma = A tabulated map of the plasma ##
## density and temperature may be used ##
## (.true.) or not (.false.) ##
## -if .true., the file ##
## 'plasma_tab.dat' must be filled ##
## with data provided by the user ##
## -if .false., the following values ##
## for the plasma density and ##
## temperature are used ##
## rho = plasma density in g/cm3 ##
## (ex. 10. for H at 10 g/cm3) ##
## T_ini = Initial temperature in eV ##
## (for plasmas, bitemp must be set .false.) ##
## ##
## if metal : Mat = Al for Aluminum ##
## Cu for Copper ##
## Ta for Tantalum ##
## XX for other solids -> needs tabulated_resistivity ##
## .true. and Z0, A0 and rho filled in this case ##
## ##
## Kalpha tracer layer : Tracer = 0 (no tracer) or 1 (tracer) ##
## z_tracer_start = target depth (microns) at ##
## which the tracer layer starts##
## z_tracer_stop = target depth (microns) at ##
## which the tracer layer stops ##
## Z_tracer = tracer atomic number ##
## A_tracer = tracer atomic weight ##
## rho_tracer = tracer density in g/cm3 ##
## ##
## IMPORTANT NOTE : Except for : -Hydrogen plasmas, for which the ##
## plasma transport coefficients are ##
## computed according to the ##
## Hubbard-Spitzer's model, ##
## -Aluminum, Copper or Tantalum, for ##
## which the transport coefficient ##
## models are valid from the solid to ##
## the plasma state and ##
## - tabulated resistivity, ##
## the initial plasma temperature T_ini must be ##
## greater than the Fermi temperature in order to ##
## make valid the Lee-More's plasma model ##
## ##
#########################################################################
#########################################################################
#
#Material 1
#
#Mat Al
#
#Z0 1.
#
#A0 1.008
#
#tabulated_plasma .false.
#
#rho 50.
#
#T_ini 1.e0
#
#tabulated_resistivity .false.
#
#Tracer 0
#
#z_tracer_start 50.
#
#z_tracer_stop 55.
#
#Z_tracer 29.
#
#A_tracer 63.54
#
#rho_tracer 8.96
#