-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTFIDFSummarizer.py
77 lines (62 loc) · 2.75 KB
/
TFIDFSummarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import nltk
import re
import string
from gensim.models import Word2Vec
from nltk.tokenize import sent_tokenize as nltk_sent_tokenize
from nltk.tokenize import word_tokenize as nltk_word_tokenize
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from nltk.corpus import stopwords
import numpy as np
from scipy.spatial.distance import cosine
def Similarity(v1, v2):
score = 0.0
if np.count_nonzero(v1) != 0 and np.count_nonzero(v2) != 0:
score = ((1 - cosine(v1, v2)) + 1) / 2
return score
def WordVectors(sentences, embedding_model):
word_vectors = dict()
for sent in sentences:
words = nltk_word_tokenize(sent)
for w in words:
word_vectors.update({w: embedding_model.wv[w]})
return word_vectors
def SentTokenize(text):
sents = nltk_sent_tokenize(text)
sents_filtered = []
for s in sents:
sents_filtered.append(s)
return sents_filtered
def SentProcessing(text):
stop_words = set(stopwords.words('english'))
sentences = SentTokenize(text)
sentences_cleaned = []
for sent in sentences:
words = nltk_word_tokenize(sent)
words = [w for w in words if w not in string.punctuation]
words = [w for w in words if not w.lower() in stop_words]
words = [w.lower() for w in words]
sentences_cleaned.append(" ".join(words))
return sentences_cleaned
def GetTFIDF(sentences):
vectorizer = CountVectorizer()
sent_word_matrix = vectorizer.fit_transform(sentences)
transformer = TfidfTransformer(norm=None, sublinear_tf=False, smooth_idf=False)
tfidf = transformer.fit_transform(sent_word_matrix)
tfidf = tfidf.toarray()
centroid_vector = tfidf.sum(0)
centroid_vector = np.divide(centroid_vector, centroid_vector.max())
feature_names = vectorizer.get_feature_names()
relevant_vector_indices = np.where(centroid_vector > 0.3)[0]
word_list = list(np.array(feature_names)[relevant_vector_indices]) # get centroid words
return word_list
def EmbeddingRep(words, word_vectors, embedding_model):
embedding_representation = np.zeros(embedding_model.vector_size, dtype="float32") # vocabulary size of text
word_vectors_keys = set(word_vectors.keys()) # alphabetical order or vocabulary in word form (keys of word vectors)
count = 0
for w in words:
if w in word_vectors_keys: # lookup against key to extract the correct corresponding word vector
embedding_representation = embedding_representation + word_vectors[w] # sum of loop
count += 1
if count != 0:
embedding_representation = np.divide(embedding_representation, count)
return embedding_representation