-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
400 lines (346 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#%%
import math
from bisect import bisect_right
#%%
def inputNumber(message):
'''Input Value and check if it is a number
Parameters:
arg (str): Message to display on input
InputParameter:
Positive non-zero Number
Returns:
int:Returning Value
'''
while True:
try:
userInput = float(input(message))
if userInput <= 0:
raise ValueError()
except ValueError:
print("This is not a positive non-zero number! Try Again")
continue
else:
return userInput
# %%
def inputTerrain():
'''Input Terrain Category, validate its input and return z0 and zmin
Parameters:
None
Returns (in this order):
z0: Returning Value
zmin: Returning Value
'''
while True:
userInput = input("Terrain Category as per Table 4.1 (0 to 4) : ")
if userInput.isdigit() and 0 <= int(userInput) <= 4:
if int(userInput) == 0:
return 0.003, 1
elif int(userInput) == 1:
return 0.01, 1
elif int(userInput) == 2:
return 0.05, 2
elif int(userInput) == 3:
return 0.3, 5
elif int(userInput) == 4:
return 1, 10
print("Value entered is not an integer between 0 and 4. Try Again")
def inputTerrainIh(z):
'''Input Terrain Category, validate its input and output an interpolated graph for Turbulence intensity
Parameters:
None
Returns (in this order):
Iz: Returning Value
'''
while True:
h_vals = [0.,5.,10.,15.,20.,30.,40.,50.,75.,100.,150.,200.]
intensity = [[.165,.165,.157,.152,.147,.140,.133,.128,.118,.108,.095,.085],
[.196,.196,.183,.176,.171,.162,.156,.151,.140,.131,.117,.107],
[.271,.271,.239,.225,.215,.203,.195,.188,.176,.166,.150,.139],
[.342,.342,.342,.342,.342,.305,.285,.270,.248,.233,.210,.196]]
userInput = input("Terrain Category as per Table 6.1 (1 to 4) : ")
if userInput.isdigit() and 1 <= int(userInput) <= 4:
if int(userInput) == 1:
interp = Interpolate(h_vals,intensity[0])
return interp(z)
elif int(userInput) == 2:
interp = Interpolate(h_vals,intensity[1])
return interp(z)
elif int(userInput) == 3:
interp = Interpolate(h_vals,intensity[2])
return interp(z)
elif int(userInput) == 4:
interp = Interpolate(h_vals,intensity[3])
return interp(z)
print("Value entered is not an integer between 1 and 4. Try Again")
def inputConnecType():
'''Input Connection Type, validate its input and return Damping Factor delta_s
Parameters:
None
Returns (in this order):
delta_s : Logarithmic decrement of structural damping in the fundamental mode
'''
while True:
userInput = input("Primary plate connections perpendicular to longitudinal axis for Damping\n\
1=[welded] 2=[high resistance bolts] 3=[ordinary bolts] 4=[Enter number...] : ")
if userInput.isdigit() and 1 <= int(userInput) <= 4:
if int(userInput) == 1:
return 0.02
elif int(userInput) == 2:
return 0.03
elif int(userInput) == 3:
return 0.05
elif int(userInput) == 4:
return inputNumber("Please enter a structural damping factor [0 to 0.15 typ] : ")
print("Value entered is not an integer between 1 and 3. Try Again")
def inputPrintYesNo(message,string):
'''Input y [yes] or n [no] and if yes, print out intermediate values in calculation'''
while True:
userInput = input(message)
if userInput == "y":
return string
elif userInput == "n":
return None
print("Value entered is not \"y\" or \"n\". Try Again")
def inputDampingAS():
'''Input ULS/SLS and type of structure, validate its input and return Damping Factor delta2
Parameters:
None
Returns (in this order):
delta_2 : Logarithmic decrement of structural damping in the fundamental mode
'''
while True:
userInput = input("Input structural type and case for damping calculations AS1170 Cl6.2.2\n\
1=[steel ULS] 2=[steel SLS deflection] 3=[steel SLS acceleration]\n\
4=[concrete ULS] 5=[concrete SLS deflection] 6=[concrete SLS acceleration]\n\
7=[Enter number...] : ")
if userInput.isdigit() and 1 <= int(userInput) <= 7:
if int(userInput) == 1:
return 0.02
elif int(userInput) == 2:
return 0.012
elif int(userInput) == 3:
return 0.01
elif int(userInput) == 4:
return 0.03
elif int(userInput) == 5:
return 0.015
elif int(userInput) == 6:
return 0.01
elif int(userInput) == 7:
return inputNumber("Please enter a structural damping factor [0 to 0.3 typ] : ")
print("Value entered is not an integer between 1 and 7. Try Again")
#Linear interpolation function to get value at a point given a set of x and y points
class Interpolate:
def __init__(self, x_list, y_list):
if any(y - x <= 0 for x, y in zip(x_list, x_list[1:])):
raise ValueError("x_list must be in strictly ascending order!")
self.x_list = x_list
self.y_list = y_list
intervals = zip(x_list, x_list[1:], y_list, y_list[1:])
self.slopes = [(y2 - y1) / (x2 - x1) for x1, x2, y1, y2 in intervals]
def __call__(self, x):
if not (self.x_list[0] <= x <= self.x_list[-1]):
raise ValueError("x out of bounds!")
if x == self.x_list[-1]:
return self.y_list[-1]
i = bisect_right(self.x_list, x) - 1
return self.y_list[i] + self.slopes[i] * (x - self.x_list[i])
# %%
class wind_calcs:
def __init__(self,z,b,h,n,vb,cf):
self.z = z
self.b = b
self.h = h
self.n = n
self.vb = vb
self.cf = cf
self.ro = 1.25 #kg/m3 air density
def EN1991(self,z0,zmin,delta_s,mass):
self.z0 = z0
self.zmin = zmin
self.delta_s = delta_s
self.mass = mass
#Mean Wind Speed
self.c0 = 1 # Sec 4.3.3 assumed, as upwind slope typically < 3 degrees
z0ii = 0.05 #Sec 4.3.2
self.kr = 0.19 * (z0 / z0ii)**0.07 # Eq 4.5
self.cr = self.kr * math.log(max(zmin, self.z) / z0) #Cl 4.3.1 Terrain Roughness
self.vm = self.cr * self.c0 * self.vb #Eq 4.3
def cd_cs(self,z_s):
#Sec 4.4 Iv(z) The turbulence intensity at height z is
#defined as the Standard Deviation of the turbulence divided
#by the wind velocity
kl = 1.0 # Sec 4.4(1) assumed
Iv = kl / (self.c0 * math.log(self.z / self.z0))
#Sec B.1 (1) Wind Turbulence
zt = 200 #(m) Reference Height
Lt = 300 #(m) Reference Length
alpha = 0.67 + 0.05 * math.log(self.z0)
L = Lt * (max(self.zmin, self.z)/ zt)**alpha
#Sec B.1 (2) Wind Distribution over frequencies - Power spectral function
fL = self.n*L/self.vm
SL = 6.8 * fL/(1 + 10.2 * fL)**(5/3)
# F.5 Logarithmic decrement of damping
delta_d = 0 #Assumed no special damping devices
dens_air = 1.25 #(kg/m3)
delta_a = self.cf * dens_air * self.vm / (2 * self.n * self.mass/self.h)
delta = delta_s + delta_a + delta_d
# B.2 Structural Factors
B2 = 1 / (1 + 0.9 * ((self.b + self.h) / L)**0.63) #Eq B.3 Background Factor allow lack full pressure correlation
nh = 4.6 * self.h * fL / L
nb = 4.6 * self.b * fL / L
Rh = 1/nh - 1/(2*nh**2) * (1 - math.exp(-2*nh)) #Eq B.7 Aerodynamic admittance function (h)
Rb = 1/nb - 1/(2*nb**2) * (1 - math.exp(-2*nb)) #Eq B.8 Aerodynamic admittance function (b)
R2 = math.pi**2 * SL * Rh * Rb / (2 * delta) #Eq B.6 Resonance response Factor
v = self.n * math.sqrt(R2/(B2+R2)) #(Hz) Eq B.5 Up-crossing Frequency
T = 600 #(s) Eq B.4 Averaging time for mean wind velocity
kp = max(math.sqrt(2 * math.log(v * T)) + 0.6 / math.sqrt(2 * math.log(v * T)),3)
cs = (1 + 7 * Iv * math.sqrt(B2)) / (1 + 7 * Iv) #size factor
cd = (1 + 2 * kp * Iv * math.sqrt(B2 + R2)) / (1 + 7 * Iv * math.sqrt(B2)) #dynamic factor
cs_cd = (1 + 2 * kp * Iv * math.sqrt(B2 + R2))/ (1 + 7 * Iv) #combined size and dynamic factor
print(f'The structural factor is:\n'
f'cs_cd = {cs_cd:3.2f}:\n'
f'cs = {cs:7.2f}\n'
f'cd = {cd:7.2f}')
# Ask user whether intermediate results are required:
print(inputPrintYesNo("Do you want to see the intermediate values? y = [YES] n = [NO]: ",
f'TURBULENCE, SPECTRAL FUNC & DAMPING\n'
f'kr={self.kr:10.2f}\n'
f'cr={self.cr:10.2f}\n'
f'vm={self.vm:10.2f}\n'
f'Iv={Iv:10.2f}\n'
f'alpha={alpha:7.2f}\n'
f'L={L:11.2f}\n'
f'fL={fL:10.2f}\n'
f'SL={SL:10.2f}\n'
f'delta_s={self.delta_s:5.2f}\n'
f'delta_a={delta_a:5.2f}\n\n'
f'STRUCTURAL FACTORS INPUTS:\n'
f'B2={B2:10.2f}\n'
f'nh={nh:10.2f}\n'
f'nb={nb:10.2f}\n'
f'Rh={Rh:10.2f}\n'
f'Rb={Rb:10.2f}\n'
f'R2={R2:10.2f}\n'
f'v={v:11.2f}\n'
f'T={T:11.2f}\n'
f'kp={kp:10.2f}'))
def Vortex(self,d):
b = self.h #height of beam variable definition
l = self.b #Length of beam variable redefinition
#Read Graph of Strouhal Number Table E.1 EN1991.1.4
db_vals = [0,1,2,3,4,5,10]
St_vals = [.12,.12,.06,.06,.15,.11,.09]
interp = Interpolate(db_vals,St_vals)
St = interp(d/b)
#Critical Wind Velocity vcrit,i
vcrit = b * self.n / St
#Scruton Number [Ratio structural mass to fluid mass]
#The ability of the structure to absorb and dissipate the energy
#from vortex shedding depends on the structural damping
Sc = 2 * self.delta_s * self.mass / (self.ro * b**2)
#Reynolds Number
v = 15 * 10**-6 #m2/s kinematic velocity of air
Re = b * vcrit / v
#Vortex Shedding Action
#APPROACH 1
K = 0.1 #Table E.5 for simply supported structure
#Correlation Length E 1.5.2.3
#clat Calculations Table E.2 & E.3
clat0 = 1.1
if vcrit_ratio := vcrit/self.vm <= 0.83:
clat = clat0
elif vcrit_ratio <= 1.25:
clat = (3 - 2.4 * vcrit_ratio) * clat0
else:
clat = 0
#TODO - Check whether manually collating mode shape factors is needed in certain structures
#Refer Table E.5 for n and m mode shape factors
#Refer Table F.1 for phi.iy.s
#Calculate correlation lenght factor on assumption of Lj length.
Lj_div_b = 6.0 #TODO CHECK assumption. Based on Sigmund spreadsheets example 30-G
lamda = l / b
Kw = min(math.cos(math.pi / 2 * (1 - (Lj_div_b) / lamda)),0.6)
#Max displacement over time of the point with phi_iy = 1
Yfmax = b * (1 / St**2) * (1 / Sc) * K * Kw * clat #E.7
#Inertia force per unit length
phi_iys = 1 #at midspan normalised
Fw = self.mass * (2 * math.pi * self.n)**2 * phi_iys * Yfmax
print(f"The maximum displacement over time of a point with phi_iy = 1 is:\n"
f"Yfmax={Yfmax:7.3f} m\n"
f"The inertia force per unit length at distance s along beam [taken as midspan] is:\n"
f"Fw={Fw:10.0f} N/m")
# Ask user whether intermediate results are required:
print(inputPrintYesNo("Do you want to see the intermediate values? y = [YES] n = [NO]: ",
f'delta_s={self.delta_s:5.2f}\n'
f'kr={self.kr:10.2f}\n'
f'cr={self.cr:10.2f}\n'
f'vm={self.vm:10.2f}\n'
f'St={St:10.2f}\n'
f'vcrit={vcrit:7.2f}\n'
f'Sc={Sc:10.2f}\n'
f'Re={Re:10.0f}\n'
f'K={K:11.2f}\n'
f'clat0={clat0:7.2f}\n'
f'clat={clat:8.2f}\n'
f'lamda={lamda:7.2f}\n'
f'Kw={Kw:10.2f}'))
def Cdyntower(self,Ih,bsh,Vdes,delta2):
# Convert values from EN terminology to AS1170
s = self.z
h2 = self.z
gv = 3.4
na = self.n
#Background Factor Eq 6.2(2)
Lh = 85 * (h2 / 10)**0.25
Bs = 1 / (1 + math.sqrt(0.26 * (h2 - s)**2 + 0.46 * bsh**2) / Lh)
#Height and Peak Factors for the response
Hs = 1 + (s / h2)**2
gR = math.sqrt(1.2 + 2 * math.log(600 * na))
#Size Reduction Factor Eq6.2(5)
N = na * Lh * (1 + gv * Ih) / Vdes
S = 1 / ((1 + 3.5 * na * h2 * (1 + gv * Ih) / Vdes) * (1 + 4 * na * bsh * (1 + gv * Ih) / Vdes))
#Dynamic Factor
Et = math.pi * N / (1 + 70.8 * N**2)**(5 / 6)
Cdyn = (1 + 2 * Ih * math.sqrt(gv**2 * Bs + Hs * gR**2 * S * Et / delta2)) / (1 + 2 * gv * Ih)
print(f'The Cdyn Dynamic factor is:\n'
f'Cdyn = {Cdyn:9.2f}')
# Ask user whether intermediate results are required:
print(inputPrintYesNo("Do you want to see the intermediate values? y = [YES] n = [NO]: ",
f'Ih={Ih:10.2f}\n'
f'delta2={delta2:6.2f}\n'
f's={s:11.2f}\n'
f'gv={gv:10.2f}\n'
f'n={na:11.2f}\n'
f'Lh={Lh:10.2f}\n'
f'Bs={Bs:10.2f}\n'
f'Hs={Hs:10.2f}\n'
f'gR={gR:10.2f}\n'
f'N={N:11.2f}\n'
f'S={S:11.2f}\n'
f'Et={Et:10.2f}\n'))
#%%
func = wind_calcs(z := inputNumber("Enter the height above ground 'z' in metres : "),
inputNumber("Length of Beam perpendicular to the wind 'b' in metres : "),
inputNumber("Height of beam 'h' in metres : "),
inputNumber("Natural Frequency 'n' in Hz : "),
inputNumber("Mean Wind speed 10 min ave [refer Durst Curve for conversion from 3s] 'vb' in m/s: "),
inputNumber("Aerodynamic shape factor 'cf' : "))
if inputPrintYesNo("\nConduct EN1991.1.4 calculations y = [Yes] n = [No] : ",True):
func.EN1991(inputTerrain()[0],
inputTerrain()[1],
delta_s := inputConnecType(),
mass := inputNumber("Enter the mass per unit metre of beam at the mid-span 'mass' in kg/m : "))
if inputPrintYesNo("\nConduct cd_cs calculation AnnB EN1991.1.4 [applies to cantilevers / beams with constant sign]\n\
y = [YES] n = [NO] : ",True):
func.cd_cs(inputNumber("Reference Height for determining structural factor 'z_s' in metres : "))
if inputPrintYesNo("\nConduct Vortex Shedding Calculation as per EN1991.1.4 [simply supported beams only]\n\
y = [YES] n = [NO] : ",True):
func.Vortex(inputNumber("Horizontal width of section 'd' in metres : "))
if inputPrintYesNo("\nConduct Cdyn calculation Sec6 AS1170.2 [applies to cantilever structures with even mass distribution]\n\
y = [YES] n = [NO] : ",True):
func.Cdyntower(inputTerrainIh(z),
inputNumber("What is the average breadth of the cantilever structure 'bsh' and 'b0h' in metres : "),
inputNumber("What is the wind gust speed for a 0.2s interval as per AS1170.2 Cl 2.3 in m/s : "),
inputDampingAS())
input("Press Any Key to Exit!")