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Introduction

We used the Wine Quality Dataset from the UCI Machine Learning Repository to predict the red
and white wine qualities, given their physicochemical attributes. We tried the following methods:
linear and logistic regression, random forests, XGBoost, SVMs, Naive Bayes, ridge and lasso
regression. Our results show that SVMs outperform just about any other model in terms of test
accuracy, while the test accuracies for red wines are consistently greater than white wines;
however, the accuracies themselves are not as high due to the overall lack of correlation between
predictors.

About the Dataset

We used the Wine Quality Dataset from the UCI Machine Learning Repository as our dataset for
analysis [1]. It contains two datasets, each consisting of red wines and white wines. Each dataset
contains 12 variables: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, and quality (integers ranging
from 0 to 10). The goal is to predict the wine quality. There are 1599 red wine samples and 4898
white wine samples.

Class Distribution

We plotted the class label distributions for red wines and white wines separately, as displayed in
figure 1. We can see that the majority of labels are either a 5, 6, or 7, with very few labels outside
this range. The lowest quality given in both datasets is a 3. We see a few white wine samples
with a quality of 9, while the maximum quality in all red wine examples is 8. Looking at this
plot, this dataset is highly imbalanced.

Correlations Among Predictors

We then plotted the correlations between each predictor for the red (left) and white (right) wine
datasets, in the form of heat maps (figure 2) and histograms (figure 3). We notice that most of the
predictor pairs in the heat map not on the main diagonal have a light orange color, which denotes
a weak inter-predictor relationship. We also see that most of these predictor pairs have a
correlation closer to 0, which similarly denotes very little correlation among predictors. We can
see later that this weak correlation among predictors, as well as the highly imbalanced class
distribution, makes our models very difficult to yield high performances. Very importantly, we
can see that the red wine dataset has more variable pairs with higher correlations, which makes it



easier for models to pick up patterns within predictors; as we see later, this contributes to models
predicting more accurately for red wines than white wines.

Approaches & Experimental Process

In this report, we mainly talk about four different methods that we’ve used in detail: linear and
logistic regression, random forests, XGBoost, and SVM. We considered this wine quality
prediction problem in both regression and classification settings. We ran both linear and logistic
regression with red and wine samples in the same dataset and in separate datasets. We ran
XGBoost with red and wine samples in the same dataset, along with random forest models and
SVM models with red and white wine samples sundered in two datasets.

In our notebooks, we sampled the proportion of predicted values within 0.5 and 1 of the actual
class, as inspired by the reference paper in [2]. The latter is significantly higher because of how
close the majority of class labels are skewed together. For regression problems in general, we
only use the proportion of predicted values within 0.5 of the ground truth label as our actual test
accuracy, as this is equivalent to rounding the predicted values to their nearest class. We simply
use the classification accuracy to evaluate classification methods. For all our models, we always
use a 80-20 train-test split, with all random seeds set to 1 for reproducibility.

Method 1: Linear & Multinomial Logistic Regression

The first methods we tried are linear and (multinomial) logistic regression, as we tried to treat
wine quality prediction as both a regression and classification problem. Both linear and logistic
regression are treated as baseline models that are normally attempted first. We tried running both
methods on the combined dataset (red and white wines in the same dataset) and on separate
datasets.

First, we tried using linear regression on the combined dataset. For preprocessing, we scaled all
our predictors (including factor variables, which are converted into numeric) in the entire dataset
with mean 0 and standard deviation 1. Using a 80-20 train-test split and assuming default
hyperparameters, we obtain a test accuracy of 0.5692308. As a reminder, for all regression
models we tried, the test accuracy is the proportion of (continuous) predictions values within 0.5
of the ground truth. When we obtained the model summary (shown in figure 4), we found out
that citric.acid and chlorides had a p-value higher than any reasonable threshold, so we fit
another model without these variables. Although all our remaining variables were significant in
this model using p-value 0.05 (shown in model summary in figure 5), our test accuracy dipped
slightly to 0.5675923.



We also trained linear regression on separate red and white datasets. We standardized the red and
white datasets to have mean 0 and variance 1. Using the same process as described above, we
obtained a test accuracy of 0.5285714 on the white dataset and 0.6375 on the red dataset, for a
weighted average of 0.5553846. Once again, when we obtained the model summaries, we found
out that four of the 11 predictors had a p-value higher than 0.05 for the white dataset as shown in
figure 6, and six of them for the red dataset as depicted in figure 7. We then removed these
insignificant predictors, and refitted these models. Our test accuracy for white wines stayed the
same, while the red dataset now yields 0.634375 test accuracy, for a weighted average of
0.5546154. All variables for both the white and red datasets were significant, as they are lower
than any reasonable p-value threshold as shown in figures 8 and 9.

We also tried the logistic regression models for classification. We performed standardization
procedures the same way as in linear regression. We obtained a 0.5653846 test accuracy for the
combined dataset. Unlike in linear regression, we did not perform any variable pruning, as
multinomial logistic regression models do not print out the p-values for each variable. When the
white and red wine samples are sundered into separate subsets, test accuracies of 0.5561224 and
0.621875 were obtained for the white and red subsets respectively, for a final weighted accuracy
of 0.5723077.

In general, we do not see much of a difference in terms of test accuracy between all six of these
models above. The highest accuracy thus far is obtained via logistic regression on separate
datasets, with over 57% test accuracy, while the lowest is around 55.46% for linear regression on
split dataset and only significant predictors. Removing insignificant variables did not affect our
test accuracy by very much, in fact it actually decreased by tenths of a percentage point.
Removing insignificant variables only changes the proportions of predictors that are significant
to the model, but this does not mean that it will improve the generalization accuracy of the
model. For both linear and logistic regression, we see that the red wine dataset has a higher test
accuracy compared to the white wine dataset. This is counterintuitive, since we know that a
larger number of data samples usually yield a larger test accuracy, there are less red samples
(1599) than white samples (4898). We hypothesize that both models are picking up patterns in
red wines more accurately.

Multinomial logistic regression also has a slightly longer runtime in R compared to linear
regression. We can simply use the glm function to get a list of continuous values for prediction.
However, we had to use a special library designed for multinomial logistic regression, nnet,
which takes longer to train. The same glm function we used in linear regression can only handle
binary classification, while our quality labels are multi-class. While standardizing predictor
variables is not required for linear or logistic regression, it is useful for faster convergence during
training (especially for logistic regression). Notice that the logistic regression converged with
default settings (100 maximum iterations) for both the white and red subsets, thanks to



standardization. Such convergence would not be possible without standardization, according to
our previous trials.

Method 2: Random Forests

In an attempt to improve the logistic and linear regression models, we tried random forests
(regression and classification methods) with red and white wine datasets run separately. Random
forests decorrelate the trees by randomly sampling m << p predictors (if a dataset has p
predictors in total). The number of trees (B) is not important, as we usually choose a large
number, since random forests do not overfit. We thought that ensemble methods, including
random forests, were suitable for our problem.

For all models, we looped through the number of sampling variables m from 1 to 11, calculated
and plotted the test accuracies and fit times, and recorded the model yielding the maximum test
accuracy (including the optimal m, its fit time, as well as the test accuracy itself). All other
parameters were left as default. Note that the default number of trees is B = 500.

Let’s talk about the regression models first. It takes 36 seconds to finish fitting models for each
m on the red dataset and yield a final test accuracy of 0.634375; whereas, on the white subset, it
takes 2-and-a-half minutes to complete the total CV search and muster a 0.5795918 accuracy;
overall, we get a weighted average test accuracy of 0.59307609.

Moving on to random forest classification models. It takes about 17 seconds to finish fitting
models for each m on the red dataset and yield a final test accuracy of 0.61875; whereas, on the
white subset, it takes over a minute to complete the total CV search and muster a 0.5826531
accuracy; overall, we get a weighted average test accuracy of 0.5915385.

Once again, we see that the red subset outperforms the white subset in terms of test accuracy, and
1s also much faster in terms of runtime. The latter makes sense, as there are about 4 times as
many white samples than red samples. Like linear and logistic regression, random forests are
also more adept at predicting red wines than white wines, as they are picking up patterns in red
wines more accurately.

We can see from figures 10 and 12 that there is no clear relationship between test accuracies and
the number of variables sampled for random forests, as the optimal m is different for each model.
In general, we cannot tell which number of predictors sampled will yield the largest test
accuracy, since this is highly dependent on the dataset. As corroborated in figures 11 and 13, we
can see that the fit times increase linearly for each increase in m, since sampling more variables
means using more predictors to build trees, which increases the runtime linearly (since there are
no predictors). We would expect that the fewer variables we sample on, the less time it takes to



fit the random forests model, as fewer variables mean a smaller feature dimension space, which
also prevents us from overfitting!

While random forests seem like a reasonable method to try, they are usually not congenial for
imbalanced class distributions, as they are built on decision tree models. Since each tree chooses
features in a uniform distribution, trees will usually be biased in majority classes [4]. Common
techniques to circumvent include oversampling and undersampling data samples during the
bootstrapping process [3], which are outside the scope of this class. We tried this technique
mainly because it was covered in lecture.

Method 3: XGBoost

We then tried the XGBoost method. XGBoost, or “eXtreme Gradient Boosting”, is a boosting
method implementation specifically designed to optimize computational speed, model
performance, and scalability, with slightly more sophisticated training procedures [S]. In recent
years, XGBoost has dominated machine learning, data mining, and Kaggle competitions. For
boosting trees in general, we can choose any tree depth from 1 to 4, and a shrinkage rate
(learning rate) of either 0.01 or 0.001, while choosing the number of tree estimators carefully.

For our training and validation process, we used a combined dataset consisting of both red and
white wine samples to train XGBoost, mainly because we had trouble trying to set the proper
configurations to run XGBoost for separate red and white wine datasets; specifically, the xgboost
package in R requires that the class labels start from 0 and the same number of factor levels, and
there were different class label ranges for red and white wines (3 to 8 for red, but 3 to 9 for
white). We fit an XGBoost model for each number of tree estimators from 200 to 2000, with an
interval of 200. We fixed the shrinkage rate and tree depth parameters to 0.01 and 2 respectively,
used the “multi::softprob” objective function, with the evaluation metric set as “merror”. For
each hyperparameter configuration (number of tree estimators), we obtained the test accuracies
from the model. Because of the nature of the inputs for XGBoost in R, we only used this method
for classification.

We plotted our test accuracy rates (left) and fit times in seconds (right) for each number of
estimators as shown in figure 14. We can clearly see that the test accuracy staggers across
different numbers of iterations, with the highest occurring at 1800 estimators. After 1800
estimators, XGBoost starts to overfit. The fit times increase linearly as the number of estimators
increase (with the longest fit time at 83 seconds), as more estimators mean more trees to be
added in the model. Since the XGBoost algorithm builds up multiple trees (like random forests),
it naturally takes slower to train.



After 509.400 seconds of fitting models for each configuration, we found out that the best model
yielded 1800 estimators with a test accuracy of 0.5584615. It took 76.530 seconds to train this
model. These results are recorded in the performance summary table.

Although XGBoost is advertised as an efficient, scalable boosting algorithm boasting high
accuracy, it does not improve our overall test accuracy compared to any of the methods that
we’ve mentioned so far. Unlike random forests, XGBoost (and any other boosting method) is
prone to overfit the test data for a large number of estimators, and subject to a lower test
accuracy.

Method 4: SVM

We have also tried the SVM classification and regression techniques separately for red and white
wine samples. For both methods, we standardized our datasets before splitting them into training
and test sets. We kept the default parameters for our SVM model, using a Gaussian RBF kernel.
Our hyperparameter we searched over was the RBF kernel parameter gamma, which we used the
same range gamma = {2”(-15), 2(-14), ..., 2"(3)} as recommended in the reference paper [2],
obtained the test accuracies, and found the gamma that yielded the highest test accuracy. We
recorded and plotted the test accuracies and fit times for each gamma tested. We also recorded
the total time for the CV search.

Our SVM classification method on the red wines dataset yielded a test accuracy of 0.628125 for
gamma = 2°(-2), while on the white dataset yielded 0.6020408 test accuracy for gamma = 2(-6),
for a weighted average of 0.6084615. This is the first time thus far that we see a weighted test
accuracy above 60%. For SVM regression, we defined our model type as ‘eps-regression’, which
denotes the epsilon-insensitive loss function for regression, as the reference paper uses this
method. This method applied on the red wines dataset yielded a test accuracy of 0.640625 for
gamma = 2(-9), while on the white dataset yielded 0.5836735 test accuracy for gamma = 27(-3),
for a weighted average of 0.5976923.

We also plotted the test accuracies and fit times for both methods on red and white subsets, as
shown in figures 15 through 18. For each increasing gamma (starting from 2°(-15)), a common
trend is that the test accuracy generally starts out small, increases first, and then decreases back
again (although we do see more fluctuation for regression on the white subset). A general trend
for the fit times is that they are usually low for smaller values of gamma, but start to increase
when gamma reaches closer to 1 and surpasses it. The gamma parameter determines how much
impact a single example has on predictions, with larger gamma values implying a more flexible
decision boundary (two examples are similar only when closer together), which also means a
higher proclivity of overfitting [6]. We can see that it takes more time to fit SVM with large



gamma values, as it takes more time to demarcate the decision boundaries. Not surprisingly, it
takes more time to train white samples than red samples as there are more of them.

Other Methods Attempted

In addition to the methods above, we tried the Naive Bayes model (with default settings) for the
red and white datasets separately, yielding test accuracies of 0.5875 for red wines and 0.3938776
for white wines, for a weighted average accuracy of 0.4415385. We also attempted ridge and
lasso regression, obtaining 0.64025 and 0.646875 test accuracy respectively for red wines, but a
measly 0.5408163 and 0.5316327 for white wines. The 0.646875 test accuracy for lasso
regression is the highest out of any model fit on the red wines subset, but it does not generalize
well to white wines.

Why is our Accuracy So Low Across Models?

All four of our methods produced an extremely low test accuracy, with the highest performance
just over 60% test accuracy. To see why this is, let’s revisit the correlation plots between the
predictors described before.

As shown in the heat maps and correlation histograms, there is very little correlation between the
different predictors, so it is very difficult to find patterns among the variables, because there are
not that many predictors (only 12 of them) and they are not very strong indicators. This
contributes to low accuracies across different models, since we can't utilize any inter-predictor
patterns to better learn about the data [7].

Moreover, we can also see that the class labels (wine qualities) are extremely unbalanced, as the
bulk of the labels are 5, 6, or 7, yet there are very few examples that are 4 or lower or 8 or above.
The models, in turn, will also spit out class labels that are equally unbalanced, as the predictors
will also predict mostly 5s, 6s, or 7s, while very rarely predicting any other quality value.

Performance Summary Table

The table below is a summary of the test accuracies, fit times, and CV times (if applicable)
obtained from each approach. Random forests and SVM methods are trained on separate red and
white wine datasets, while XGBoost is trained on the combined dataset. For methods trained on
separate datasets, the overall test accuracies are calculated using a weighted average (based on
the number of red and white samples). If a hyperparameter grid was used for search, the fit time
is recorded for the model chosen. The highest test accuracy (red, white, overall) is highlighted in
yellow.



Method Regression or Classification? | Subset Fit Time of Chosen Model (s| CV Search Time (s) Test Accura Overall Test Accuracy.
Linear i i Red (original variables) 0.121 N/A 0.6375
White (original variables) 0.098 N/A 0.5285714

0.5553846

Red (significant variables) 0.101 N/A 0.634375
White (significant variables) 0.087 N/A 0.5285714
0.5546154

Combined (original variables) _ 0.144 N/A 0.5692308 0.5692308
Combined (significant variables) 0.112 N/A 0.5676923 0.5676923
Logistic Regression Classification Red 0.12 N/A 0.621875
White 0.414 N/A 0.5561224
0.5723077
Combined 0.671 N/A 0.5653846 0.5653846
Random Forest Regression Red 2.483 35.992 0.634375
White 17.08 157.985 0.5795918
0.5930769
Classification Red 1.419 17.616 0.61875
White 5.917 68.724 0.5826531
0.5915385
XGBoost Classification Combined 76.53 509.4 0.5584615 0.5584615

SVM Regression Red 0.128 3.205 0.640625
White 1.276 27.852 0.5836735
0.5976923

Classification Red 0.15 3.955 0.628125
White 1.668 36.059 0.6020408
0.6084615

Naive Bayes Classfication Red 0.097 N/A 0.5875
White 0.106 N/A 0.3938776
0.4415385

Ridge Regression Regression Red 0.18 0.021 0.640625
White 0.294 0.018 0.5408163
0.5653846

Lasso Regression Regression Red 0.115 0.021 0.646875
White 0.406 0.021 0.5316327
0.56

Model Comparison & Conclusion

We used the Wine Quality Dataset to predict the red and white wine qualities, given certain
attributes about the wines, using linear and logistic regression, random forests, XGBoost, and
SVMs, as well as naive Bayes, and ridge and lasso regression. Comparing all our methods from
the performance summary table, we can easily argue that SVM is the superior method in terms of
test accuracy for both red and white wines. The highest test accuracy for white wines, as well as
the highest overall test accuracy, is obtained from SVM classification, both over 60%. The SVM
classification model generalizes the best for the white wine subset (the only model over 60% for
white wines), while generalizing relatively well (62%) for red wines, while other models have
wider accuracy differences between red and white. Lasso regression yielded the highest test
accuracy for red wines (above 64.68%). SVM regression is tied for a close second with ridge
regression. Yet both ridge and lasso perform under 55% for white wines. We can also argue that
XGBoost is not an apropos model for our problem, as it takes the longest time to train, only to
yield a suboptimal test accuracy of under 55%, which is lower than most models. Naive Bayes is
also not suitable, as it produces the lowest overall test accuracy of any model. Although
producing decent accuracy, random forests in general are rarely suitable for datasets with skewed
labels. Consistently, we see that for all models we tried that run on separate red and white wine
subsets, the test accuracy is greater for red wines, as only one model fell short of the 60%
accuracy mark for red wines, while only one model surpassed 60% for white wines. This is
mostly because the inter-predictor correlation relationships are closer for red wines, as there are
more pairs of predictors with higher correlations. All our methods do not yield a very high test
accuracy, mainly because the correlations between predictors are mostly weak, as shown in the
correlation heat maps and histograms, and because the class labels are heavily skewed towards
the middle, which makes the models predict certain quality values more than others.
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Figure 1: Class label distributions for red wines (left) and white wines (right)

Correlations Between Predictors for Red Wines
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Figure 2: Heat maps showing correlations between predictors for red wines (left) and white

Correlations Between Predictors for White Wines
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Histogram of Predictor Pair Correlation Distribution for Red Wines
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Figure 3: Histograms showing correlations between predictors for red wines (left) and white
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Call:
glm(formula = quality ~ ., data = data.train)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.8306 -0.4856 -0.0393 0.4685 3.0600

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.810147 0.013564 428.362 < 2e-16 ***
type -0.255863 0.034286 -7.463 9.89e-14 ***
fixed.acidity 0.113441 0.025227 4.497 7.05e-06 ***
volatile.acidity -0.287466 0.017108 -16.803 < 2e-16 ***
citric.acid -0.007659 0.013272 -0.577 0.5639
residual.sugar 0.378264 0.034087 11.097 < 2e-16 ***
chlorides -0.020418 0.014589 -1.400 0.1617
free.sulfur.dioxide 0.077500 0.014680 5.279 1.35e-07 ***
total.sulfur.dioxide -0.045617 ©0.020504 -2.225 ©0.0261 *
density -0.435904 0.053968 -8.077 8.18e-16 ***
pH 0.115117 0.016402 7.019 2.53e-12 ***
sulphates 0.089172 0.013256 6.727 1.92e-11 ***
alcohol 0.225247 0.027268 8.261 < 2e-16 ***
Signif. codes: © ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘" 1

(Dispersion parameter for gaussian family taken to be 0.5575871)
Null deviance: 4059.4 on 5196 degrees of freedom
Residual deviance: 2890.5 on 5184 degrees of freedom

AIC: 11728

Number of Fisher Scoring iterations: 2

Figure 4: Model summary for linear regression run on the combined dataset with all predictors.

Call:
glm(formula = quality ~ ., data = data.train)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.8118 -0.4875 -0.0427 0.4692 3.0577

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 5.80940 .01354 429.008 < 2e-16 ***
type -0.25048 .03363 -7.447 1.11e-13 ***
fixed.acidity 0.11665 .02474 4.716 2.47e-06 ***
volatile.acidity -0.28666 .01666 -17.202 < 2e-16 ***

(0]
[}
[}
[}
residual.sugar 0.38735 0.03361 11.524 < 2e-16 ***
free.sulfur.dioxide 0.07663 0.01467 5.224 1.82e-07 ***
total.sulfur.dioxide -0.04626 0.02047 -2.260 0.0238 *

(0]

[}

[0}

[}

density -0.44886 .05336 -8.412 < 2e-16 ***
pH 0.12070 .01603 7.530 5.96e-14 ***
sulphates 0.08597 .01311 6.560 5.91e-11 ***
alcohol 0.22391 .02714 8.251 < 2e-16 ***

Signif. codes: © ‘***’ 0.001 ‘**’ 0.01 ‘*" 0.05 ‘.’ 0.1 " 1

(Dispersion parameter for gaussian family taken to be 0.55765)
Null deviance: 4059.4 on 5196 degrees of freedom

Residual deviance: 2892.0 on 5186 degrees of freedom

AIC: 11726

Number of Fisher Scoring iterations: 2

Figure 5: Model summary for linear regression run on the combined dataset with only significant
predictors. Any predictor with p-value greater than 0.05 was removed in the previous model.



Call:
glm(formula = quality ~ ., data = data.train.white)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.4877 -0.5083 -0.0267 0.4738 3.1563

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 5.909111 0.012403 476.412 < 2e-16 ***
fixed.acidity 0.037385 0.019550 1.912 0.0559 .
volatile.acidity -0.175857 0.013087 -13.438 < 2e-16 ***
citric.acid -0.004634 0.012942 -0.358 0.7203
residual. sugar 0.401750 0.041591 9.660 < 2e-16 ***
chlorides -0.001167 0.013517 -0.086 0.9312
free.sulfur.dioxide 0.080784 0.016457 4.909 9.54e-07 ***
total.sulfur.dioxide -0.009183 0.017935 -0.512 0.6087
density -0.440531 0.061364 -7.179 8.37e-13 ***
pH 0.112191 0.017706 6.336 2.62e-10 ***
sulphates 0.085696 0.013107 6.538 7.02e-11 ***
alcohol 0.276059 0.032370 8.528 < 2e-16 ***
Signif. codes: © ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘." 0.1 ‘' " 1

(Dispersion parameter for gaussian family taken to be 0.5833359)
Null deviance: 3251.6 on 3917 degrees of freedom
Residual deviance: 2278.5 on 3906 degrees of freedom

AIC: 9021

Number of Fisher Scoring iterations: 2

Figure 6: Model summary for linear regression run on the white wines subset with all predictors.

Call:
glm(formula = quality ~ ., data = data.train.red)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.67559 -0.38331 -0.07094 0.45606 1.97593

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.65961 0.01840 307.634 < 2e-16 ***
fixed.acidity 0.03971 0.05163 0.769 0.441931
volatile.acidity -0.18833 0.02437 -7.729 2.20e-14 ***
citric.acid -0.03509 0.03230 -1.087 0.277460
residual.sugar 0.01494 0.02508 0.596 0.551596
chlorides -0.08276 0.02184 -3.789 0.000158 ***
free.sulfur.dioxide 0.03473 0.02598 1.337 0.181599
total.sulfur.dioxide -0.12127 0.02708 -4.478 8.22e-06 ***
density -0.03665 0.04548 -0.806 0.420436
pH -0.05272 0.03289 -1.603 0.109171
sulphates 0.13683 0.02095 6.530 9.49e-11 ***
alcohol 0.30200 0.03083 9.795 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 '**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1

(Dispersion parameter for gaussian family taken to be 0.419634)
Null deviance: 843.43 on 1278 degrees of freedom

Residual deviance: 531.68 on 1267 degrees of freedom

AIC: 2532.9

Number of Fisher Scoring iterations: 2

Figure 7: Model summary for linear regression run on the red wines subset with all predictors.



Call:
glm(formula = quality ~ ., data = data.train.white)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.4457 -0.5129 -0.0220 0.4685 3.2217

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 5.91103 0.01234 479.013 < 2e-16 ***
volatile.acidity -0.18026 0.01250 -14.416 < 2e-16 ***
residual. sugar 0.35495 0.03064 11.585 < 2e-16 ***
free.sulfur.dioxide 0.07436 0.01322 5.624 2.00e-08 ***
density -0.36915 0.04227 -8.734 < 2e-16 ***
pH 0.09073 0.01289 7.041 2.25e-12 ***
sulphates 0.08094 0.01287 6.288 3.57e-10 ***
alcohol 0.31303 0.02550 12.274 < 2e-16 ***

Signif. codes: © ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' " 1
(Dispersion parameter for gaussian family taken to be 0.5833682)

Null deviance: 3251.6 on 3917 degrees of freedom
Residual deviance: 2281.0 on 3910 degrees of freedom
AIC: 9017.2

Number of Fisher Scoring iterations: 2

Figure 8: Model summary for linear regression run on the white wines subset with only
significant predictors. Any predictor with p-value greater than 0.05 was removed in the previous
model.

Call:
glm(formula = quality ~ ., data = data.train.red)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.66477 -0.39657 -0.06996 0.46170 2.07097

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 5.66006 0.01819 311.082 < 2e-16 ***
volatile.acidity -0.19480 0.01940 -10.042 < 2e-16 ***
chlorides -0.08122 0.02020 -4.022 6.11e-05 ***
total.sulfur.dioxide -0.10098 0.01821 -5.546 3.54e-08 ***
sulphates 0.13800 0.02029 6.802 1.59e-11 ***
alcohol 0.30804 0.01892 16.284 < 2e-16 ***
Signif. codes: 0 ‘***’ 9.001 ‘**’ 0.01 ‘*’ ©0.05 ‘.’ 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.4216015)
Null deviance: 843.43 on 1278 degrees of freedom
Residual deviance: 536.70 on 1273 degrees of freedom
AIC: 2533
Number of Fisher Scoring iterations: 2
Figure 9: Model summary for linear regression run on the red wines subset with only significant
predictors. Any predictor with p-value greater than 0.05 was removed in the previous model.
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Figure 10: Test accuracies for random forest regression on red (left) and white (right) dataset for
each number of predictors sampled.
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Figure 11: Fit times for random forest regression on red (left) and white (right) dataset for each
number of predictors sampled.
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Figure 12: Test accuracies for random forest classification on red (left) and white (right) dataset
for each number of predictors sampled.



Figure 13

Fit Times for RF Classification for Red Wines
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14: Test accuracy rates (left) and fit times in seconds (right) for each number of estimators

for XGBoost.
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Figure 15: Test Accuracies for SVM classification on red (left) and white (right) dataset for each
gamma in RBF kernel.



Fit Times for different gamma via SVM Classification on Red Subset Fit Times for different gamma via SVM Classification on White Subset

[=}
@4 o e O
(=} ™ \
/ ° °
'e}
g - o / w
N
[ / © [} o
E 0 £ J/
pil o-o pal o
& Q o &
81\~ \ - 7
/\ o o
i /
© 0—0 \ /\ oL _o
= 4 N o -0 o °
(<] 0—0—0_ 0 f -1 o ° \0—0‘0\0—0/ N7
T T T T T T T
-15 -10 -5 0 -15 -10 -5 0
log_2(gamma) log_2(gamma)

Figure 16: Fit times for SVM classification on red (left) and white (right) dataset for each gamma

in RBF kernel.
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Figure 17: Test Accuracies for SVM regression on red (left) and white (right) dataset for each
gamma in RBF kernel.
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Figure 18: Fit times for SVM regression on red (left) and white (right) dataset for each gamma in

RBF kernel.



References

1.

Wine Quality Data Set

https://archive.ics.uci.edu/ml/datasets/wine+quality

Reference Paper: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling
Wine Preferences by Data Mining from Physicochemical Properties. In Decision Support
Systems ElseV1er 47(4) 547-553, 2009

Random Forest for Imbalanced Dataset: Example with Avalanches in French Alps

https://towardsdatascience.com/random-forest-for-imbalanced-dataset-example-with-aval

anches-in-french-alps-77ffa582f68b
Is Random Forest a Good Option for Unbalanced Data Classification?

https://stats.stackexchange.com/questions/242833/is-random-forest-a-good-option-for-un

lanced-data-classification
A Gentle Introduction to XGBoost for Applied Machine Learning
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learni
ng/
RBF SVM Parameters
https://scikit-learn.org/stable/auto_examples/svm/plot rbf parameters.html
Estimating Wine Quality with Machine Learning (Al), 72% Accuracy
https://ai.plainenglish.io/estimating-wine-quality-with-machine-learning-ai-72-accuracy-

8a5{f0bab3b2



https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.sciencedirect.com/science/article/abs/pii/S0167923609001377?via%3Dihub
https://towardsdatascience.com/random-forest-for-imbalanced-dataset-example-with-avalanches-in-french-alps-77ffa582f68b
https://towardsdatascience.com/random-forest-for-imbalanced-dataset-example-with-avalanches-in-french-alps-77ffa582f68b
https://stats.stackexchange.com/questions/242833/is-random-forest-a-good-option-for-unbalanced-data-classification
https://stats.stackexchange.com/questions/242833/is-random-forest-a-good-option-for-unbalanced-data-classification
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://ai.plainenglish.io/estimating-wine-quality-with-machine-learning-ai-72-accuracy-8a5ff0bab3b2
https://ai.plainenglish.io/estimating-wine-quality-with-machine-learning-ai-72-accuracy-8a5ff0bab3b2

R Notebook

Code v

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the

code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

—SVM classification—
Red dataset

library(kernlab)
library(el071)
library(MASS)

set.seed(1)

red <- read.csv('winequality-red.csv', header = TRUE, sep=";")

red <- na.omit(red)
red.quality <- red$quality
red[,-12] <- scale(red[,-12])

# Red dataset

train_red idx <- sample(nrow(red) * 0.8) # 80-20 train-test split

train.red <- red[train_red idx,]
train.red$quality <- as.factor(train.red$quality)
train.red.quality <- train.red$quality

test.red <- red[-train_red idx,]
test.red$quality <- as.factor(test.red$quality)
test.red.quality <- test.red$quality

# test.red <- test.red[,-12]

# Backward model selection
library(leaps)

regfit.bwd=regsubsets(quality~.,data=train.red,nvmax=11,method="backward")

summary(regfit.bwd)

test.mat=model.matrix(quality~.,data=test.red) # create an X matrix of test data

#

#

#

#

#

#

# val.errors=rep(NA,19)

# for(i in 1:19){

# coefi=coef(regfit.best,id=1)

# pred=test.mat[,names(coefi) ]%*%coefi
#
#
#
#
#

val.errors[i]=mean((Hitters$Salary[test]-pred)”2)

}

val.errors
which.min(val.errors)
coef(regfit.best,10)

set.seed(1)

gamma <- 2”seq(-15, 3, 1)

test accuracy <- rep(0, length(gamma))
fit time <- rep(0, length(gamma))
i=1

start <- proc.time()

for(g in gamma){
start it <- proc.time()
model = svm(quality~., data = train.red, gamma=g)
fit time[i] <- proc.time() - start it

test accuracy[i] <- mean(test.red.quality == predict(model, test.red))

i=1+1

Hide


http://rmarkdown.rstudio.com/

number of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of
replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a mul
tiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to r
eplace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthn
umber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of

replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t length

Hide
print(cv_time red <- proc.time() - start) # total CV time
user system elapsed
3.955 0.095 4.214
Hide
print(fit time[which.max(test accuracy)]) # fit time of best model
[1] 0.15
Hide
print(best gamma_red <- 2"~ (which.max(test accuracy) - 16)) # gamma yielding highest test accuracy
[1] 0.25
Hide
print(test_acc_red <- max(test_accuracy)) # test accuracy
[1] 0.628125
Hide
plot(log2(gamma), test accuracy, type='b', xlab = 'log 2(gamma)', main='Test Accuracies for different gamma via S

VM Classification on Red Subset')
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Hide

xlab = 'log 2(gamma)', main='Fit Times for different gamma via SVM Classifi

plot(log2(gamma), fit time, type='b
cation on Red Subset')

Fit Times for different gamma via SVM Classification on Red Subset
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Hide
NA
NA
Hide

White dataset

library(kernlab)
library(el071)

package ‘el071’ was built under R version 3.6.2
Hide



library(MASS)

white <- read.csv('winequality-white.csv', header = TRUE, sep=";")
white <- na.omit(white)

white.quality <- white$quality

white[,-12] <- scale(whitel[,-12])

set.seed(1)

train white idx <- sample(nrow(white) * 0.8) # 80-20 train-test split
train.white <- white[train white idx,]

train.white$quality <- as.factor(train.white$quality)
train.white.quality <- train.white$quality

test.white <- white[-train white idx,]
test.white$quality <- as.factor(test.white$quality)
test.white.quality <- test.white$quality

# test.white <- test.white[,-12]

# Backward model selection

library(leaps)
regfit.bwd=regsubsets(quality~.,data=train.white,nvmax=11,method="backward")
summary (regfit.bwd)

#
#
#
#
#
# test.mat=model.matrix(quality~.,data=test.white) # create an X matrix of test data
# val.errors=rep(NA,19)

# for(i in 1:19){

# coefi=coef(regfit.best,id=1)

# pred=test.mat[,names(coefi)]%*%coefi

# val.errors[i]=mean((Hitters$Salary[test]-pred)~2)

#}

# val.errors

# which.min(val.errors)

# coef(regfit.best,10)

set.seed(1)

gamma <- 2%seq(-15, 3, 1)

test accuracy <- rep(0, length(gamma))
fit time <- rep(0, length(gamma))
i=1

start <- proc.time()

for(g in gamma){
start it <- proc.time()

model = svm(quality~., data = train.white, gamma=g)

fit time[i] <- proc.time() - start it

test accuracy[i] <- mean(as.character(test.white.quality) == as.character(predict(model, test.white)))
i=1+1

number of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of
replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a mul
tiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to r
eplace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthn
umber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of

replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t length

Hide
print(cv_time white <- proc.time() - start) # total CV time
user system elapsed
36.059 0.505 37.336
Hide

print(fit_time[which.max(test_accuracy)]) # fit time of best model



[1] 1.668

Hide
print(best gamma white <- 2~(which.max(test accuracy) - 16)) # gamma yielding highest test accuracy
[1] 0.015625

Hide
print(test acc white <- max(test accuracy)) # test accuracy
[1] 0.6020408

Hide
plot(log2(gamma), test accuracy, type='b', xlab = 'log 2(gamma)', main='Test Accuracies for different gamma via S

VM Classification on White Subset')

Test Accuracies for different gamma via SVM Classification on White Subs
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Hide

plot(log2(gamma), fit time, type='b', xlab = 'log 2(gamma)', main='Fit Times for different gamma via SVM Classifi
cation on White Subset')
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Weighted Test Accuracy
Hide

(nrow(test.red) * test acc red + nrow(test.white) * test acc white) / (nrow(test.red) + nrow(test.white))

[1] 0.6084615

— SVM regression (epsilon-insensitive loss) —

Red dataset



set.seed(1)

red <- read.csv('winequality-red.csv', header = TRUE, sep=";")
red <- na.omit(red)

red.quality <- red$quality

red[,-12] <- scale(red[,-12])

# Red dataset

train red idx <- sample(nrow(red) * 0.8) # 80-20 train-test split
train.red <- red[train red idx, ]

# train.red$quality <- as.factor(train.red$quality)
train.red.quality <- train.red$quality

test.red <- red[-train_red idx, ]

# test.red$quality <- as.factor(test.red$quality)
test.red.quality <- test.red$quality

# test.red <- test.red[,-12]

# Backward model selection

library(leaps)
regfit.bwd=regsubsets(quality~.,data=train.red,nvmax=11,method="backward")
summary (regfit.bwd)

test.mat=model.matrix(quality~.,data=test.red) # create an X matrix of test data
val.errors=rep(NA,19)
for(i in 1:19){
coefi=coef(regfit.best,id=1)
pred=test.mat[,names(coefi)]%*%coefi
val.errors[i]=mean((Hitters$Salary[test]-pred)"2)
}
val.errors
which.min(val.errors)
coef(regfit.best,10)
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set.seed(1)

gamma <- 2%seq(-15, 3, 1)

test accuracy <- rep(0, length(gamma))
fit time <- rep(0, length(gamma))
i=1

start <- proc.time()

for(g in gamma){
start it <- proc.time()
model = svm(quality~., data = train.red, gamma=g, type='eps-regression')
fit time[i] <- proc.time() - start it
test accuracy[i] <- mean(abs(test.red.quality - predict(model, test.red)) <= 0.5)
i=1+1

number of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of
replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a mul
tiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to r
eplace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthn
umber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of

replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t length

Hide
print(cv_time red <- proc.time() - start) # total CV time
user system elapsed
3.205 0.057 3.267
Hide

print(fit_time[which.max(test accuracy)]) # fit time of best model

[1] 0.128



Hide

print(best gamma red <- 2"~ (which.max(test accuracy) - 16)) # gamma yielding highest test accuracy

[1] 0.001953125

Hide
print(test_acc_red <- max(test_accuracy)) # test accuracy
[1] 0.640625

Hide
plot(log2(gamma), test accuracy, type='b', xlab = 'log 2(gamma)', main='Test Accuracies for different gamma via S

VM Regression on Red Subset')

Test Accuracies for different gamma via SVM Regression on Red Subset
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Hide

plot(log2(gamma), fit time, type='b', xlab = 'log 2(gamma)', main='Fit Times for different gamma via SVM Regressi
on on Red Subset')
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White dataset

Hide



white <- read.csv('winequality-white.csv', header = TRUE, sep=";")
white <- na.omit(white)

white.quality <- white$quality

whitel[,-12] <- scale(whitel[,-12])

set.seed(1)

train white idx <- sample(nrow(white) * 0.8) # 80-20 train-test split
train.white <- white[train white idx,]

# train.white$quality <- as.factor(train.white$quality)
train.white.quality <- train.white$quality

test.white <- white[-train white idx,]

# test.white$quality <- as.factor(test.white$quality)
test.white.quality <- test.white$quality

# test.white <- test.whitel[,-12]

# Backward model selection

library(leaps)
regfit.bwd=regsubsets(quality~.,data=train.white,nvmax=11,method="backward")
summary (regfit.bwd)

#
#
#
#
#
# test.mat=model.matrix(quality~.,data=test.white) # create an X matrix of test data
# val.errors=rep(NA,19)

# for(i in 1:19){

# coefi=coef(regfit.best,id=1i)

# pred=test.mat[,names(coefi) ]%*%coefi

# val.errors[i]=mean((Hitters$Salary[test]-pred)"2)

#}

# val.errors

# which.min(val.errors)

# coef(regfit.best,10)

set.seed (1)

gamma <- 27seq(-15, 3, 1)

test accuracy <- rep(0, length(gamma))
fit time <- rep(0, length(gamma))
i=1

start <- proc.time()

for(g in gamma){
start it <- proc.time()
model = svm(quality~., data = train.white, gamma=g, type='eps-regression')
fit time[i] <- proc.time() - start it
test accuracy[i] <- mean(abs(test.white.quality - predict(model, test.white)) <= 0.5)
i=1i+1

number of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of
replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a mul
tiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to r
eplace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthn
umber of items to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of

replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of items to replace is
not a multiple of replacement lengthnumber of items to replace is not a multiple of replacement lengthnumber of i
tems to replace is not a multiple of replacement lengthnumber of items to replace is not a multiple of replacemen
t length

Hide
print(cv_time white <- proc.time() - start) # total CV time
user system elapsed
27.852 0.369 28.544
Hide

print(fit time[which.max(test accuracy)]) # fit time of best model

[1] 1.276

Hide



print(best gamma white <- 2~(which.max(test accuracy) - 16)) # gamma yielding highest test accuracy

[1] 0.125

Hide
print(test_acc_white <- max(test_accuracy)) # test accuracy
[1] 0.5836735

Hide
plot(log2(gamma), test accuracy, type='b', xlab = 'log 2(gamma)', main='Test Accuracies for different gamma via S

VM Regression on White Subset')
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Hide

plot(log2(gamma), fit time, type='b', xlab = 'log 2(gamma)', main='Fit Times for different gamma via SVM Regressi
on on White Subset')
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Hide

(nrow(test.red) * test acc red + nrow(test.white) * test acc_white) / (nrow(test.red) + nrow(test.white))

[1] 0.5976923
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press
Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks.
Instead, the output of the chunk when it was last run in the editor is displayed.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press
Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks.
Instead, the output of the chunk when it was last run in the editor is displayed.
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Code v

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the

code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

Lasso Regression
1. Use Split Dataset

Red Dataset:

library(glmnet)

# Red Datasets

red <- read.csv('winequality-red.csv', header = TRUE, sep=";")
red <- na.omit(red)

red.quality <- red$quality

red[,-12] <- scale(red[,-12]) # scale/standardization

train red idx <- sample(nrow(red) * 0.8) # 80-20 train-test split
train.red <- red[train_red idx,]

train.red.quality <- train.red$quality

train.x.red <- model.matrix(quality~., train.red)

test.red <- red[-train_red idx,]
test.red.quality <- test.red$quality
test.x.red <- model.matrix(quality~., test.red)

# Ridge Regression
start = proc.time()

cv.ridge = cv.glmnet(train.x.red, train.red.quality, alpha=0)
proc.time() - start

user system elapsed
0.180 0.020 0.203

par(mfrow=c(1,1))
cv.ridge

Call: cv.glmnet(x = train.x.red, y = train.red.quality, alpha = 0)

Measure: Mean-Squared Error

Lambda Index Measure SE Nonzero
min 0.0406 100 0.4225 0.01700 11
1lse 0.4556 74 0.4391 0.01472 11

plot(cv.ridge, main='Test MSE vs Lambda (Ridge, Red)')

bestlam.red = cv.ridge$lambda.min
bestlam.red

[1] 0.04055818

start = proc.time()

ridge.best.red = glmnet(train.x.red, train.red.quality, alpha=0, lambda=bestlam.red)

proc.time() - start

user system elapsed
0.021 0.002 0.024

Hide

Hide

Hide

Hide

Hide
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ridge.pred.red = predict(ridge.best.red, test.x.red)

test acc.red.ridge <- mean(abs(ridge.pred.red - test.red.quality) <= 0.5) # test accuracy (prediction within 0.5
of ground truth)

test_acc.red.ridge

[1] 0.640625

Hide
# Lasso Regression
start = proc.time()
cv.lasso = cv.glmnet(train.x.red, train.red.quality, alpha=1)
proc.time() - start
user system elapsed
0.115 0.016 0.131
Hide
par(mfrow=c(1,1))
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Hide
cv.lasso
Call: cv.glmnet(x = train.x.red, y = train.red.quality, alpha = 1)
Measure: Mean-Squared Error
Lambda Index Measure SE Nonzero
min 0.01077 40 0.4238 0.01925 8
lse 0.06925 20 0.4426 0.02113 4
Hide

plot(cv.lasso, main='Test MSE vs Lambda (Lasso, Red)')
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Hide
bestlam.red = cv.lasso$lambda.min
bestlam. red
[1] 0.01077261
Hide
start = proc.time()
lasso.best.red = glmnet(train.x.red, train.red.quality, alpha=1l, lambda=bestlam.red)
proc.time() - start
user system elapsed
0.021 0.003 0.023
Hide

lasso.pred.red = predict(lasso.best.red, test.x.red)

test acc.red.lasso <- mean(abs(lasso.pred.red - test.red.quality) <= 0.5) # test accuracy (prediction within 0.5
of ground truth)

test acc.red.lasso

[1] 0.646875

White Dataset:

Hide



white <- read.csv('winequality-white.csv', header = TRUE, sep=";")
white <- na.omit(white)

white.quality <- white$quality

whitel[,-12] <- scale(white[,-12]) # scale/standardization

set.seed(1)

train white idx <- sample(nrow(white) * 0.8) # 80-20 train-test split
train.white <- white[train white idx,]

# train.white$quality <- as.factor(train.white$quality)
train.white.quality <- train.white$quality

train.x.white <- model.matrix(quality~., train.white)

test.white <- white[-train white idx,]

# test.white$quality <- as.factor(test.white$quality)
test.white.quality <- test.white$quality
test.x.white <- model.matrix(quality~., test.white)
# Ridge Regression

start = proc.time()

cv.ridge = cv.glmnet(train.x.white, train.white.quality, alpha=0)
proc.time() - start

user system elapsed
0.294 0.032 0.383

Hide

par(mfrow=c(1,1))
cv.ridge

Call: cv.glmnet(x = train.x.white, y = train.white.quality, alpha = 0)
Measure: Mean-Squared Error
Lambda Index Measure SE Nonzero

min 0.04141 1060 0.5888 0.01888 11
lse 0.26619 80 0.6058 0.01844 11

Hide
plot(cv.ridge, main='Test MSE vs Lambda (Ridge, White)"')
bestlam.white = cv.ridge$lambda.min

bestlam.white

[1] 0.04141091

Hide

start = proc.time()
ridge.best.white = glmnet(train.x.white, train.white.quality, alpha=0, lambda=bestlam.white)
proc.time() - start

user system elapsed
0.018 0.003 0.022

Hide

ridge.pred.white = predict(ridge.best.white, test.x.white)

test acc.white.ridge <- mean(abs(ridge.pred.white - test.white.quality) <= 0.5) # test accuracy (prediction withi
n 0.5 of ground truth)

test acc.white.ridge

[1] 0.5408163

Hide

# Lasso Regression
start = proc.time()
cv.lasso = cv.glmnet(train.x.white, train.white.quality, alpha=1)
proc.time() - start



user system elapsed
0.406 0.032 0.517

Hide
par(mfrow=c(1,1))
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cv.lasso
Call: cv.glmnet(x = train.x.white, y = train.white.quality, alpha = 1)
Measure: Mean-Squared Error
Lambda Index Measure SE Nonzero
min 0.004338 50 0.5868 0.01220 10
lse 0.025409 31 0.5986 0.01119 8
Hide

plot(cv.lasso, main='Test MSE vs Lambda (Lasso, White)')
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bestlam.white = cv.lasso$lambda.min
bestlam.white
[1] 0.004338272
Hide
start = proc.time()
lasso.best.white = glmnet(train.x.white, train.white.quality, alpha=1, lambda=bestlam.white)
proc.time() - start
user system elapsed
0.021 0.004 0.034
Hide

lasso.pred.white = predict(lasso.best.white, test.x.white)

test acc.white.lasso <- mean(abs(lasso.pred.white - test.white.quality) <= 0.5) # test accuracy (prediction withi
n 0.5 of ground truth)

test acc.white.lasso

[1] 0.5316327

Weighted Accuracy:

Hide

(test acc.white.ridge * nrow(test.white) + test acc.red.ridge * nrow(test.red)) / ( nrow(test.white) + nrow(test
.red))

[1] 0.5653846
Hide

(test_acc.white.lasso * nrow(test.white) + test_acc.red.lasso * nrow(test.red)) / ( nrow(test.white) + nrow(test
.red))

[1] 0.56

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.



When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press
Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks.
Instead, the output of the chunk when it was last run in the editor is displayed.



R Notebook

This is an R Markdown (http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the
code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

— Correlations Between Variables —

To see why we get very low accuracies accross the board for this Wines dataset, let’s look at the correlation relationships between the predictors.
Let’s also take a look at the class label distributions of the dataset (how balanced is it?).

Red Wines Dataset:

Hide
red <- read.csv('winequality-red.csv', header = TRUE, sep=";")
red <- na.omit(red)
red.quality <- red$quality
red[,-12] <- scale(red[,-12])
# Correlation matrix between variables
corr <- cor(red[,-12])
corr
fixed.acidity volatile.acidity citric.acid residual.sugar chlorides free.sulfur.dioxide t

otal.sulfur.dioxide density pH
fixed.acidity 1.00000000 -0.256130895 0.67170343 0.114776724 0.093705186 -0.153794193
-0.11318144 0.66804729 -0.68297819
volatile.acidity -0.25613089 1.000000000 -0.55249568 0.001917882 0.061297772 -0.010503827
0.07647000 0.02202623 0.23493729
citric.acid 0.67170343 -0.552495685 1.00000000 0.143577162 0.203822914 -0.060978129
0.03553302 0.36494718 -0.54190414
residual.sugar 0.11477672 0.001917882 0.14357716 1.000000000 0.055609535 0.187048995
0.20302788 0.35528337 -0.08565242
chlorides 0.09370519 0.061297772 0.20382291 0.055609535 1.000000000 0.005562147
0.04740047 0.20063233 -0.26502613
free.sulfur.dioxide -0.15379419 -0.010503827 -0.06097813 0.187048995 0.005562147 1.000000000
0.66766645 -0.02194583 0.07037750
total.sulfur.dioxide -0.11318144 0.076470005 0.03553302 0.203027882 0.047400468 0.667666450
1.00000000 0.07126948 -0.06649456
density 0.66804729 0.022026232 0.36494718 0.355283371 0.200632327 -0.021945831
0.07126948 1.00000000 -0.34169933
pH -0.68297819 0.234937294 -0.54190414 -0.085652422 -0.265026131 0.070377499
-0.06649456 -0.34169933 1.00000000
sulphates 0.18300566 -0.260986685 0.31277004 0.005527121 0.371260481 0.051657572
0.04294684 0.14850641 -0.19664760
alcohol -0.06166827 -0.202288027 0.10990325 0.042075437 -0.221140545 -0.069408354
-0.20565394 -0.49617977 0.20563251

sulphates alcohol
fixed.acidity 0.183005664 -0.06166827
volatile.acidity -0.260986685 -0.20228803
citric.acid 0.312770044 0.10990325
residual.sugar 0.005527121 0.04207544
chlorides 0.371260481 -0.22114054
free.sulfur.dioxide 0.051657572 -0.06940835
total.sulfur.dioxide 0.042946836 -0.20565394
density 0.148506412 -0.49617977
pH -0.196647602 0.20563251
sulphates 1.000000000 0.09359475
alcohol 0.093594750 1.00000000

Hide

# Plot Heatmap
heatmap(corr, main="Correlations Between Predictors for Red Wines", Colv = NA, Rowv = NA, scale="column")
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# Plot histogram
hist(corr, main='Histogram of Predictor Pair Correlation Distribution for

Histogram of Predictor Pair Correlation Distribution for Red Wines

alcohol

sulphates

pH

density
total.sulfur.dioxide
free.sulfur.dioxide
chlorides
residual.sugar
citric.acid
volatile.acidity

fixed.acidity

alcohol

Red Wines')

1.0

o _
q—
o _|
[3p]
>
(8]
c
]
3 o
g 87
—
L
o |
o — |
[ I I 1
-0.5 0.0 0.5
corr

# Plot histogram between class labels

class dist <- hist(red.quality, main='Class Label (Wine Quality) Distribution for Red Wines')

Hide

Hide



Class Label (Wine Quality) Distribution for Red Wines
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red.quality
class_dist$counts
[1] 106 53 0681 0638 0199 0 18
White Wines Dataset:

white <- read.csv('winequality-white.csv', header = TRUE, sep=";")
white <- na.omit(white)

white.quality <- white$quality

whitel[,-12] <- scale(whitel[,-12])

# Correlation matrix between variables
corr <- cor(whitel[,-12])
corr