-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtf_train.py
213 lines (184 loc) · 9.04 KB
/
tf_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# encoding: utf-8
import time
import tensorflow as tf
from model.keras_model import *
from data_utils import *
from model.tf_model import *
from sklearn.metrics import f1_score, precision_score, recall_score, classification_report
import warnings
np.random.seed(0)
warnings.filterwarnings('ignore')
flags = tf.app.flags
flags.DEFINE_boolean("train", True, "Whether train the model")
flags.DEFINE_boolean("clean", True, "Whether clean")
flags.DEFINE_string("model_type", r'tf', "")
flags.DEFINE_string("config_file", r'D:\work\daguan\data\config', "")
flags.DEFINE_string("log_file", r'D:\work\daguan\data\log.txt', "")
# configurations for the model
flags.DEFINE_integer("lstm_dim", 200, "Num of hidden units in LSTM")
flags.DEFINE_string("layer_type", 'concat', "concat or stack")
flags.DEFINE_float("dropout", 0.5, "Dropout rate")
flags.DEFINE_boolean("attention", True, "Whether use attention")
flags.DEFINE_float("lr", 0.0003, "Initial learning rate")
flags.DEFINE_string("optimizer", "adam", "Optimizer for training")
flags.DEFINE_integer("max_epoch", 120, "maximum training epochs")
flags.DEFINE_integer("models_count", 6, "Num of models_count")
flags.DEFINE_integer("train_beg", 0, "Num of models_count")
flags.DEFINE_integer("num_attention_heads", 4, "")
flags.DEFINE_integer("size_per_head", 128, "")
flags.DEFINE_string("vocab_file", r'D:\work\daguan\data\elmo_data\vocab.txt',"")
flags.DEFINE_string("options_file", r'D:\work\daguan\data\elmo_model\options.json',"")
flags.DEFINE_string("weight_file", r'D:\work\daguan\data\elmo_model\weights.hdf5',"")
flags.DEFINE_string("token_embedding_file", r'D:\work\daguan\data\elmo_model\vocab_embedding.hdf5',"")
flags.DEFINE_string("model_hub", r'D:\work\daguan\data\hub', "")
flags.DEFINE_string("result_hub", r'D:\work\daguan\data\result', "")
flags.DEFINE_string("dataset", r'D:\work\daguan\data\anns\raw_dataset.pkl', "")
flags.DEFINE_string("test_file", r'D:\work\daguan\data\test.txt', "")
FLAGS = flags.FLAGS
LOG = get_logger(FLAGS.log_file)
# config for the model
def config_model():
config = {}
config["model_type"] = FLAGS.model_type
config["lstm_dim"] = FLAGS.lstm_dim
config["dropout"] = FLAGS.dropout
config["layer_type"] = FLAGS.layer_type
config["lr"] = FLAGS.lr
config['vocab_file'] = FLAGS.vocab_file
config['options_file'] = FLAGS.options_file
config['weight_file'] = FLAGS.weight_file
config['token_embedding_file'] = FLAGS.token_embedding_file
config['size_per_head'] = FLAGS.size_per_head
config['num_attention_heads'] = FLAGS.num_attention_heads
config['attention'] = FLAGS.attention
return config
TAGS_NUM = 7
BATCH_SIZE = 128
STEP_CHECK = 30
def get_train_val_data(train_data, tags, split_index, model_count):
# split data into train/vali set
idx_val = split_index[model_count]
idx_train = []
for i in range(len(split_index)):
if i != model_count:
idx_train.extend(list(split_index[i]))
train_sentences = train_data[idx_train]
train_tags = tags[idx_train]
trains = [(train_sentences[x], train_tags[x]) for x in range(len(train_tags))]
train_manager = BatchManager(trains, False)
val_sentences = train_data[idx_val]
val_tags = tags[idx_val]
vals = [(val_sentences[x], val_tags[x]) for x in range(len(val_tags))]
val_manager = BatchManager(vals, False)
return train_manager, val_manager
def evaluate_val(sess, model, data):
LOG.info("evaluate............")
results = model.evaluate(sess, data)
y = [x[1][0] for result in results for x in result]
pred = [x[2][0] for result in results for x in result]
report = classification_report(y_pred=pred, y_true=y)
LOG.info('\n' + report)
f1 = f1_score(y, pred, average='macro')
recall = recall_score(y, pred, average='macro')
precision = precision_score(y, pred, average='macro')
LOG.info("step: {} - val_precision: {} - val_recall: {} - val_f1: {}".format(model.global_step.eval(), precision, recall, f1))
best_test_f1 = model.best_dev_f1.eval()
if f1 > best_test_f1:
tf.assign(model.best_dev_f1, f1).eval()
LOG.info("new best dev f1 score:{:>.6f}".format(f1))
return f1 > best_test_f1, f1
def run():
if not FLAGS.clean and os.path.isfile(FLAGS.config_file):
config = load_config(FLAGS.config_file)
else:
config = config_model()
save_config(config, FLAGS.config_file)
with open(FLAGS.dataset, 'rb') as f:
data, tags, test_data, split_index = pickle.load(f)
raw_test_data = read_corpus_file(FLAGS.test_file)
LOG.info('sentences: {}'.format(len(data)))
LOG.info('tags: {}'.format(len(tags)))
LOG.info('test data: {}'.format(len(test_data)))
LOG.info('raw test data: {}'.format(len(raw_test_data)))
# split dataset
input_data = (data, tags, test_data)
encoder_type = FLAGS.model_type
train_data, tags, test_data = input_data
test_manager = BatchManager(test_data, True)
best_val_score = {}
model_save_folder = os.path.join(FLAGS.model_hub, encoder_type)
result_save_folder = os.path.join(FLAGS.result_hub, encoder_type)
for folder in [model_save_folder, result_save_folder]:
if not os.path.exists(folder):
os.mkdir(folder)
for model_count in range(FLAGS.train_beg, len(split_index)):
LOG.info("MODEL: {}".format(model_count))
train_manager, val_manager = get_train_val_data(train_data, tags, split_index, model_count)
ckpt_path = os.path.join(model_save_folder, str(model_count).zfill(3))
result_save_path = os.path.join(result_save_folder, str(model_count).zfill(3) + '.npy')
if not os.path.exists(ckpt_path):
os.mkdir(ckpt_path)
steps_per_epoch = train_manager.len_data
tf.reset_default_graph()
with tf.Session() as sess:
model = create_model(sess, Model, ckpt_path, config, LOG)
loss = []
for i in range(FLAGS.max_epoch):
for batch in train_manager.iter_batch(shuffle=True):
step, batch_loss = model.run_step(sess, True, batch)
loss.append(batch_loss)
if step % STEP_CHECK == 0:
iteration = step // steps_per_epoch + 1
LOG.info("iteration:{} step:{}/{}, NER loss:{:>9.6f}".format(iteration, step % steps_per_epoch, steps_per_epoch, np.mean(loss)))
loss = []
best, best_f1 = evaluate_val(sess, model, val_manager)
if best:
save_model(sess, model, ckpt_path)
best_val_score[model_count] = best_f1
# save epoch test result
preds = model.evaluate(sess, test_manager)
test_preds = []
for pred in preds:
test_preds.append([(x[0], x[2][0]) for x in pred])
np.save(result_save_path, np.array(test_preds))
for index, f1 in best_val_score.items():
LOG.info(str(index) + ':\t' + str(f1))
result_path = os.path.join(FLAGS.result_hub, encoder_type + '_result.txt')
write_tf_result(raw_test_data, result_save_folder, result_path)
def test():
config = load_config(FLAGS.config_file)
raw_test_data = read_corpus_file(FLAGS.test_file)
test_manager = BatchManager(raw_test_data, is_test=True)
model_save_folder = os.path.join(FLAGS.model_hub, FLAGS.model_type)
result_save_folder = os.path.join(FLAGS.result_hub, 'test_' + FLAGS.model_type)
for folder in [model_save_folder, result_save_folder]:
if not os.path.exists(folder):
os.mkdir(folder)
for model_count in range(FLAGS.models_count):
LOG.info("MODEL: {}".format(model_count))
ckpt_path = os.path.join(model_save_folder, str(model_count).zfill(3))
result_save_path = os.path.join(result_save_folder, str(model_count).zfill(3) + '.npy')
if not os.path.exists(ckpt_path):
continue
tf.reset_default_graph()
with tf.Session() as sess:
model = create_model(sess, Model, ckpt_path, config, LOG)
preds = model.evaluate(sess, test_manager)
test_preds = []
for pred in preds:
test_preds.append([(x[0], x[2][0]) for x in pred])
np.save(result_save_path, np.array(test_preds))
LOG.info("Dump result to {}".format(result_save_path))
result_path = os.path.join(result_save_folder, FLAGS.model_type + '_result.txt')
write_tf_result(raw_test_data, result_save_folder, result_path)
LOG.info("Write results to {}".format(result_path))
def main(_):
if FLAGS.train:
start = time.time()
run()
end = time.time()
LOG.info('Training time {0:.3f} 分钟'.format((end - start) / 60))
else:
test()
if __name__ == "__main__":
tf.app.run(main)