-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathin_tri2d.m
81 lines (80 loc) · 2.41 KB
/
in_tri2d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [in,intri] = in_tri2d(tri,xy,pts);
%IN_TRI2D Finds whether points are within the boundaries of 2-D
% triangles.
%
% IN = IN_TRI2D(TRI,XY,PTS) given a three (3) column triangle
% connectivity matrix, TRI, a two (2) column X and Y coordinate
% matrix of nodes within TRI, XY, and a two (2) column X and Y
% coordinate matrix of points to test whether they are within
% the triangles, PTS, returns a logical vector with the same
% number of rows as PTS, IN, that is true if the corresponding
% point is within the triangles or false if not within the
% triangles.
%
% [IN,INTRI] = IN_TRI2D(TRI,XY,PTS) returns a column vector with
% the index into TRI of the triangle that contains the
% corresponding point. If the point is not within any triangle
% a zero is returned.
%
% NOTES: 1. The triangles are assumed to not overlap.
%
% 06-Aug-2013 * Mack Gardner-Morse
%
%#######################################################################
%
% Check for Inputs
%
if nargin<3
error([' *** ERROR in IN_TRI2D: A triangle connectivity matrix' ...
' and two sets of XY coordinates are required as inputs!']);
end
%
[nr,nc] = size(tri);
if nc~=3
error([' *** ERROR in IN_TRI2D: The triangle connectivity matrix' ...
' must have three columns!']);
end
[nr2,nc2] = size(xy);
[npts,nc3] = size(pts);
if nc2~=2||nc3~=2
error([' *** ERROR in IN_TRI2D: The coordinate matrices' ...
' must have two columns!']);
end
%
% Initialize Variables for the Loop
%
x = xy(:,1);
y = xy(:,2);
%
in = false(npts,1);
intri = zeros(npts,1);
%
% Calculate the Divisor
%
del = (x(tri(:,2))-x(tri(:,1))).*(y(tri(:,3))-y(tri(:,1))) ...
-(x(tri(:,3))-x(tri(:,1))).*(y(tri(:,2))-y(tri(:,1)));
%
% Loop through the Points
%
for k = 1:npts
xi = pts(k,1);
yi = pts(k,2);
%
% Get Point into Triangle Coordinates
%
w(:,2) = ((x(tri(:,3))-xi).*(y(tri(:,1))-yi)- ...
(x(tri(:,1))-xi).*(y(tri(:,3))-yi))./del;
w(:,1) = ((x(tri(:,2))-xi).*(y(tri(:,3))-yi)- ...
(x(tri(:,3))-xi).*(y(tri(:,2))-yi))./del;
w12 = sum(w(:,1:2),2);
%
% Check to See if Within Triangles
%
lidx = w(:,1)>=0&w(:,1)<=1&w(:,2)>=0&w(:,2)<=1&w12<=1;
in(k) = any(lidx);
if nargout>1&&in(k)
intri(k) = find(lidx);
end
end
%
return