-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclubs.py
executable file
·218 lines (204 loc) · 8.11 KB
/
clubs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python3
"""Clubs.py
Ask questions about Cal Poly clubs.
[//]: # (markdown comment # noqa)
Usage:
clubs.py [IN_TXT_FILE]
[ --sentence-separator=" " ]
[ --club-separator="\\n\\n\\n" ]
[ --fuzz-threshold=25 | --fuzz=25 ]
[ --context-limit=25 | --limit=25 ]
[ --verbose | -v ]
[ --debug | -d ]
clubs.py (--example | -e) [IN_TXT_FILE]
[ --sentence-separator=" " ]
[ --club-separator="\\n\\n\\n" ]
[ --fuzz-threshold=25 | --fuzz=25 ]
[ --context-limit=25 | --limit=25 ]
[ --verbose | -v ]
[ --debug | -d ]
clubs.py (--make-doc | -m) [IN_CSV_FILE] [OUT_TXT_FILE]
[ --sentence-separator=" " ]
[ --club-separator="\\n\\n\\n" ]
[ --fuzz-threshold=25 | --fuzz=25 ]
[ --context-limit=25 | --limit=25 ]
[ --verbose | -v ]
[ --debug | -d ]
clubs.py (-h | --help)
[ --verbose | -v ]
[ --debug | -d ]
Options:
-h --help Show this screen.
--example -e read IN_TXT_FILE and ask a default question.
--make-doc -m read IN_CSV_FILE and do stuff and write out txt.
[IN_TXT_FILE] defaults to "clubs.txt"
[IN_CSV_FILE] defaults to "clubs.csv"
[OUT_TXT_FILE] defaults to "clubs.txt"
--fuzz-threshold=25 --fuzz=25 defaults to 25.
--context-limit=25 --limit=25 defaults to 25.
--verbose -v printouts while running.
--debug -d printouts while running, extra debugging.
--sentence-separator=" " defaults to " ". Separates same club sentences.
--club-separator="\\n\\n\\n" defaults to "\\n\\n\\n". Separates different club sentences.
Example:
$ python clubs.py --make-doc my_clubs_data.csv my_clubs_doc.txt
$ python clubs.py --example my_clubs_doc.txt --verbose
question: "What is blah?"
...
context: "..."
...
answer: "Blah is foobar"
extradata: {...}
$ python clubs.py my_clubs_doc.txt
question: "user_input ¯\\_(ツ)_/¯"
...
answer: "¯\\_(ツ)_/¯"
Resources:
* docopt is cool
* http://docopt.org
"""
import pandas as pd
import spacy
from docopt import docopt
from ntfp.ntfp import filter_string_by_relevance, transformer
from ntfp.ntfp_types import Context, Question
from utils.terminal_colors import green_bold, print_colored_doc, yellow_bold
def make_sents(club):
templates = (
"The type of [club_name] is [types].",
"Here is the description of [club_name]: [desc].",
( # multi-line string: https://stackoverflow.com/a/10660443/5411712
"You can contact [club_name] by emailing"
" [contact_person] at [contact_email]"
" or [contact_email_2]."
),
"You can call [club_name] by the phone number [contact_phone].",
"The phone number for [club_name] is [contact_phone].",
"[club_name] has the mail box [box].",
"The mail box of [club_name] is [box].",
"[club_name] has Professor [advisor] as their advisor.",
"Professor [advisor] advises [club_name].",
"Professor [advisor] is the advisor for [club_name].",
"[club_name] affiliates with [affiliation].",
"[club_name] has the affiliation [affiliation].",
)
club_data = {
"club_name": club["club_name"],
"types": club["types"],
"desc": club["desc"],
"contact_email": club["contact_email"],
"contact_email_2": club["contact_email_2"],
"contact_person": club["contact_person"],
"contact_phone": club["contact_phone"],
"box": club["box"],
"advisor": club["advisor"],
"affiliation": club["affiliation"],
}
final_sents = []
for sent in templates:
for key in club_data:
data = club_data[key]
sent = sent.replace(f"[{key}]", f"{data}")
final_sents.append(sent)
return final_sents
if __name__ == "__main__":
arguments = docopt(__doc__, version="Clubs 1.0", help=False)
VERBOSE = arguments["--verbose"]
DEBUG = arguments["--debug"]
print(arguments) if DEBUG else None
if arguments["--help"]:
to_color_green_bold = (
"clubs.py",
"(--example | -e)",
"(--make-doc | -m)",
"(-h | --help)",
)
to_color_yellow_bold = (
"[IN_TXT_FILE]",
"[IN_CSV_FILE]",
"[OUT_TXT_FILE]",
)
to_color_white_bold = (
"Ask questions about Cal Poly clubs.",
"Usage:",
"Options:",
"Resources:",
"Example:",
)
to_color_white_bold_patterns = (r"(\$.*)",)
to_color_red_bold_patterns = (r"(defaults to.*)",)
to_color_grey_out = ("[//]: # (markdown comment # noqa)",)
print_colored_doc(
doc=__doc__,
to_color_green_bold=to_color_green_bold,
to_color_yellow_bold=to_color_yellow_bold,
to_color_white_bold=to_color_white_bold,
to_color_white_bold_patterns=to_color_white_bold_patterns,
to_color_red_bold_patterns=to_color_red_bold_patterns,
to_color_grey_out=to_color_grey_out,
)
exit()
IN_CSV_FILE = arguments["IN_CSV_FILE"] or "clubs.csv"
IN_TXT_FILE = arguments["IN_TXT_FILE"] or "clubs.txt"
OUT_TXT_FILE = arguments["OUT_TXT_FILE"] or "clubs.txt"
FUZZ = arguments["--fuzz-threshold"] or arguments["--fuzz"] or 25
FUZZ = int(FUZZ)
LIMIT = arguments["--context-limit"] or arguments["--limit"] or 25
LIMIT = int(LIMIT)
SENTENCE_SEPARATOR = arguments["--sentence-separator"] or " "
CLUB_SEPARATOR = arguments["--club-separator"] or "\n\n\n"
if arguments["--make-doc"]:
print(f"reading from {IN_CSV_FILE}...") if DEBUG else None
df = pd.read_csv(IN_CSV_FILE, escapechar="\\", engine="python")
doc = ""
print(f"making sentences...", end="") if DEBUG else None
for _, club in df.iterrows():
sents = make_sents(club)
new_string = SENTENCE_SEPARATOR.join(sents)
doc += new_string + CLUB_SEPARATOR
print(f".", end="") if DEBUG else None
print(f".", end="\n") if DEBUG else None
print(f"writing to {OUT_TXT_FILE}.") if DEBUG else None
with open(OUT_TXT_FILE, "w") as f:
f.write(doc)
elif arguments["--example"]:
doc = ""
print(f"reading from {IN_TXT_FILE}...") if DEBUG else None
with open(IN_TXT_FILE, "r") as f:
doc = f.read()
club = "Computer Science and Artificial Intelligence"
print(f"club: {club}...") if DEBUG else None
question = f"who is the advisor for {club} club?"
print(green_bold("question:"), question)
spacy_nlp = spacy.load("en_core_web_sm")
context = filter_string_by_relevance(
to=question,
string=doc,
FUZZ=FUZZ,
limit=LIMIT,
sep=CLUB_SEPARATOR,
nlp=spacy_nlp,
)
print(yellow_bold("context:"), context) if VERBOSE else None
answer, extradata = transformer(Question(question), Context(context))
print(green_bold("answer:"), answer)
print(yellow_bold("extradata:"), extradata) if VERBOSE else None
else:
doc = ""
print(f"reading from {IN_TXT_FILE}...") if DEBUG else None
with open(IN_TXT_FILE, "r") as f:
doc = f.read()
question = input(green_bold("question: "))
spacy_nlp = spacy.load("en_core_web_sm")
context = filter_string_by_relevance(
to=question,
string=doc,
FUZZ=FUZZ,
limit=LIMIT,
sep=CLUB_SEPARATOR,
nlp=spacy_nlp,
)
print(yellow_bold("context:"), context) if VERBOSE else None
answer, extradata = transformer(Question(question), Context(context))
print(green_bold("answer:"), answer)
print(yellow_bold("extradata:"), extradata) if VERBOSE else None