-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathBPNN_PID.m
127 lines (106 loc) · 2.68 KB
/
BPNN_PID.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [time,yout]=BPNN_PID()
%%惯性系数
xite=0.50;
alfa=0.05;
%神经网络结构参数
IN=4; H=5; Out=3;
%采样时间
ts=0.01;
%初始化权值参数
% wi=0.50*rands(H,IN);
% wo=0.50*rands(Out,H);
wi=[
-0.3234 0.3269 -0.3827 -0.0136
0.4135 -0.2866 -0.3405 -0.4651
0.2692 0.2864 -0.4887 0.1367
-0.1759 0.1077 -0.1479 0.2126
0.3873 -0.0634 0.3556 0.1271
];
wo=[
0.0208 0.3921 0.0192 -0.4522 -0.0991
-0.4179 0.0088 -0.1617 -0.4256 -0.3543
-0.3415 0.1173 0.1547 0.4085 0.3075
];
wi_init_save=wi; wo_init_save=wo;
wo_1=wo; wo_2=wo;
wi_1=wi; wi_2=wi;
M=[10,1,10];
x=[0,0,0];
du_1=0;
u_1=0; u_2=0; u_3=0; u_4=0; u_5=0;u_6=0;u_7=0;
y_1=0; y_2=0; y_3=0;
error_1=0; error_2=0;
Oh=zeros(H,1);
I=Oh;
%被控对象传递函数的z变换
sys=tf(400,[1,50,0]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
%%开始采样
for k=1:1:200
time(k)=k*ts;
rin(k)=1.0; %阶跃信号
yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2;
error(k)=rin(k)-yout(k); %误差
X(1)=error(k)-error_1;
X(2)=error(k);
X(3)=error(k)-2*error_1+error_2;
xii=[X(1),X(2),X(3),1];
xi=xii/norm(xii);
epid=[X(1);X(2);X(3)];
%%%前向传播----------------------------------------
%输入层到隐层线性变换
net2=xi*(wi');
%tanh激活函数
for j=1:1:H
Oh(j)=( exp( net2(j)-exp(-net2(j)) ) )/(exp( net2(j)+exp(-net2(j)) ));
end
%隐层到输出层线性变换
net3=wo*Oh;
%sigmoid激活函数,输出
for l=1:1:Out
K(l)=exp(net3(l))/(exp(net3(l))+exp(-net3(l)));
end
kp(k)=M(1)*K(1); ki(k)=M(2)*K(2); kd(k)=M(3)*K(3);
Kpid=[kp(k),ki(k),kd(k)];
du(k)=Kpid*epid;
u(k)=u_1+du(k); %更新控制器输出量
if u(k)>10
u(k)=10;
end
if u(k)<-10
u(k)=-10;
end
%%%反向传播更新权值------------------------------------------------
dyu(k)=sign((yout(k)-y_1)/(du(k)-du_1+0.0001));
for j=1:1:Out
dK(j)=1/(exp(net3(j))+exp(-net3(j)));
end
%求局部梯度因子delta3
for l=1:1:Out
delta3(l)=error(k)*dyu(k)*epid(l)*dK(l);
end
for l=1:1:Out
for i=1:1:H
d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);
end
end
%更新wo
wo=wo_1+d_wo+alfa*(wo_1-wo_2);
for i=1:1:H
dO(i)=4/(exp(net2(i))+exp(-net2(i)))^2;
end
segma=delta3*wo;
for i=1:1:H
delta2(i)=dO(i)*segma(i);
end
d_wi=xite*delta2'*xi;
%更新wi
wi=wi_1+d_wi+alfa*(wi_1-wi_2);
wo_2=wo_1; wo_1=wo;
wi_2=wi_1; wi_1=wi;
du_1=du(k);
u_7=u_6;u_6=u_5;u_5=u_4; u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);
y_2=y_1; y_1=yout(k);
error_2=error_1; error_1=error(k);
end