forked from abdallahdib/NextFace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sphericalharmonics.py
109 lines (94 loc) · 4.54 KB
/
sphericalharmonics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
import math
import numpy as np
'''
code taken and adapted from pyredner
'''
# Code adapted from "Spherical Harmonic Lighting: The Gritty Details", Robin Green
# http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf
class SphericalHarmonics:
def __init__(self, envMapResolution, device):
self.device = device
self.setEnvironmentMapResolution(envMapResolution)
def setEnvironmentMapResolution(self, res):
res = (res, res)
self.resolution = res
uv = np.mgrid[0:res[1], 0:res[0]].astype(np.float32)
self.theta = torch.from_numpy((math.pi / res[1]) * (uv[1, :, :] + 0.5)).to(self.device)
self.phi = torch.from_numpy((2 * math.pi / res[0]) * (uv[0, :, :] + 0.5)).to(self.device)
def smoothSH(self, coeffs, window=6):
''' multiply (convolve in sptial domain) the coefficients with a low pass filter.
Following the recommendation in https://www.ppsloan.org/publications/shdering.pdf
'''
smoothed_coeffs = torch.zeros_like(coeffs)
smoothed_coeffs[:, 0] += coeffs[:, 0]
smoothed_coeffs[:, 1:1 + 3] += \
coeffs[:, 1:1 + 3] * math.pow(math.sin(math.pi * 1.0 / window) / (math.pi * 1.0 / window), 4.0)
smoothed_coeffs[:, 4:4 + 5] += \
coeffs[:, 4:4 + 5] * math.pow(math.sin(math.pi * 2.0 / window) / (math.pi * 2.0 / window), 4.0)
smoothed_coeffs[:, 9:9 + 7] += \
coeffs[:, 9:9 + 7] * math.pow(math.sin(math.pi * 3.0 / window) / (math.pi * 3.0 / window), 4.0)
return smoothed_coeffs
def associatedLegendrePolynomial(self, l, m, x):
pmm = torch.ones_like(x)
if m > 0:
somx2 = torch.sqrt((1 - x) * (1 + x))
fact = 1.0
for i in range(1, m + 1):
pmm = pmm * (-fact) * somx2
fact += 2.0
if l == m:
return pmm
pmmp1 = x * (2.0 * m + 1.0) * pmm
if l == m + 1:
return pmmp1
pll = torch.zeros_like(x)
for ll in range(m + 2, l + 1):
pll = ((2.0 * ll - 1.0) * x * pmmp1 - (ll + m - 1.0) * pmm) / (ll - m)
pmm = pmmp1
pmmp1 = pll
return pll
def normlizeSH(self, l, m):
return math.sqrt((2.0 * l + 1.0) * math.factorial(l - m) / \
(4 * math.pi * math.factorial(l + m)))
def SH(self, l, m, theta, phi):
if m == 0:
return self.normlizeSH(l, m) * self.associatedLegendrePolynomial(l, m, torch.cos(theta))
elif m > 0:
return math.sqrt(2.0) * self.normlizeSH(l, m) * \
torch.cos(m * phi) * self.associatedLegendrePolynomial(l, m, torch.cos(theta))
else:
return math.sqrt(2.0) * self.normlizeSH(l, -m) * \
torch.sin(-m * phi) * self.associatedLegendrePolynomial(l, -m, torch.cos(theta))
def toEnvMap(self, shCoeffs, smooth = False):
'''
create an environment map from given sh coeffs
:param shCoeffs: float tensor [n, bands * bands, 3]
:param smooth: if True, the first 3 bands are smoothed
:return: environment map tensor [n, resX, resY, 3]
'''
assert(shCoeffs.dim() == 3 and shCoeffs.shape[-1] == 3)
envMaps = torch.zeros( [shCoeffs.shape[0], self.resolution[0], self.resolution[1], 3]).to(shCoeffs.device)
for i in range(shCoeffs.shape[0]):
envMap =self.constructEnvMapFromSHCoeffs(shCoeffs[i], smooth)
envMaps[i] = envMap
return envMaps
def constructEnvMapFromSHCoeffs(self, shCoeffs, smooth = False):
assert (isinstance(shCoeffs, torch.Tensor) and shCoeffs.dim() == 2 and shCoeffs.shape[1] == 3)
if smooth:
smoothed_coeffs = self.smoothSH(shCoeffs.transpose(0, 1), 4)
else:
smoothed_coeffs = shCoeffs.transpose(0, 1) #self.smoothSH(shCoeffs.transpose(0, 1), 4) #smooth the first three bands?
res = self.resolution
theta = self.theta
phi = self.phi
result = torch.zeros(res[0], res[1], smoothed_coeffs.shape[0], device=smoothed_coeffs.device)
bands = int(math.sqrt(smoothed_coeffs.shape[1]))
i = 0
for l in range(bands):
for m in range(-l, l + 1):
sh_factor = self.SH(l, m, theta, phi)
result = result + sh_factor.view(sh_factor.shape[0], sh_factor.shape[1], 1) * smoothed_coeffs[:, i]
i += 1
result = torch.max(result, torch.zeros(res[0], res[1], smoothed_coeffs.shape[0], device=smoothed_coeffs.device))
return result