Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Change default derivative impl to reverse mode #170

Merged
merged 25 commits into from
Aug 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,15 @@

## [unreleased]

- #170:

- changes `D` and `partial` to use reverse mode automatic differentiation by
default, and fixes all associated tests

- adds `emmy.generic/{zero?,one?,identity?}` implementations (all false) to
`emmy.tape/Completed`, in case some collection type tries to simplify these
during reverse-mode AD

- #185:

- adds a dynamic variable `emmy.calculus.derivative/*mode*` that allows the
Expand Down
16 changes: 8 additions & 8 deletions src/emmy/calculus/derivative.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@
;; implementation for the components. I vote to back out this `::s/structure`
;; installation.

(def ^:dynamic *mode* d/FORWARD-MODE)
(def ^:dynamic *mode* d/REVERSE-MODE)

(doseq [t [::v/function ::s/structure]]
(defmethod g/partial-derivative [t v/seqtype] [f selectors]
Expand Down Expand Up @@ -266,9 +266,9 @@
the [Jacobian](https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant)
of `f`."
(o/make-operator
(fn [x]
(fn [f]
(binding [*mode* d/FORWARD-MODE]
(g/partial-derivative x [])))
(g/partial-derivative f [])))
g/derivative-symbol))

(def ^{:arglists '([f])}
Expand All @@ -282,9 +282,9 @@
the [Jacobian](https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant)
of `f`."
(o/make-operator
(fn [x]
(fn [f]
(binding [*mode* d/REVERSE-MODE]
(g/partial-derivative x [])))
(g/partial-derivative f [])))
g/derivative-symbol))

(def ^{:arglists '([f])}
Expand All @@ -299,9 +299,9 @@
of `f`.

The related [[emmy.env/Grad]] returns a function that produces a structure of
the opposite orientation as [[D]]. Both of these functions use forward-mode
the opposite orientation as [[D]]. Both of these functions use reverse-mode
automatic differentiation."
D-forward)
D-reverse)

(defn D-as-matrix [F]
(fn [s]
Expand Down Expand Up @@ -337,7 +337,7 @@
"Returns an operator that, when applied to a function `f`, produces a function
that uses forward-mode automatic differentiation to compute the partial
derivative of `f` at the (zero-based) slot index provided via `selectors`."
partial-forward)
partial-reverse)

;; ## Derivative Utilities
;;
Expand Down
1 change: 0 additions & 1 deletion src/emmy/calculus/manifold.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -656,7 +656,6 @@
(g/+ (g/square x)
(g/square y)
(g/square z)))]
(println "r is" r)
(when (g/zero? r)
(u/illegal-state "SphericalCylindrical singular"))
(-> rep
Expand Down
5 changes: 2 additions & 3 deletions src/emmy/calculus/vector_calculus.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -30,10 +30,9 @@

The related [[emmy.env/D]] operator returns a function that produces a
structure of the opposite orientation as [[Grad]]. Both of these functions use
forward-mode automatic differentiation."
reverse-mode automatic differentiation."
(-> (fn [f]
(f/compose s/opposite
(g/partial-derivative f [])))
(f/compose s/opposite (d/D f)))
(o/make-operator 'Grad)))

(defn gradient
Expand Down
7 changes: 7 additions & 0 deletions src/emmy/dual.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -371,6 +371,13 @@
(def ^:const REVERSE-MODE ::reverse)
(def ^:const REVERSE-EMPTY (->Completed {}))

;; These are here to handle cases where some collection type might see instances
;; of [[Completed]] and try and handle them during simplification.

(defmethod g/zero? [Completed] [_] false)
(defmethod g/one? [Completed] [_] false)
(defmethod g/identity? [Completed] [_] false)

;; `replace-tag` exists to handle subtle bugs that can arise in the case of
;; functional return values. See the "Amazing Bug" sections
;; in [[emmy.calculus.derivative-test]] for detailed examples on how this might
Expand Down
18 changes: 9 additions & 9 deletions src/emmy/mechanics/hamilton.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -224,10 +224,9 @@
(g/zero?
(g/simplify
(g/determinant M))))
(do (println "determinant" (g/determinant M))
(throw
(ex-info "Legendre Transform Failure: determinant = 0"
{:F F :w w})))
(throw
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed extra println

(ex-info "Legendre Transform Failure: determinant = 0"
{:F F :w w}))
(let [v (g/solve-linear-left M (- w b))]
(- (* w v) (F v))))))]
(let [Dpg (D putative-G)]
Expand Down Expand Up @@ -442,11 +441,12 @@
"p.326"
[C]
(fn [s]
((- J-func
(f/compose (Phi ((D C) s))
J-func
(Phi* ((D C) s))))
(s/compatible-shape s))))
(let [s-syms (s/compatible-shape s)]
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this forces compatible-shape to evaluate and make its gensym calls before the ((D C) s) calls, important for repeatable tests

((- J-func
(f/compose (Phi ((D C) s))
J-func
(Phi* ((D C) s))))
s-syms))))

;; Time-Varying code
;;
Expand Down
4 changes: 2 additions & 2 deletions src/emmy/numbers.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -95,8 +95,8 @@
(g/infinite? a) 0
:else (g// (g/sin a) a)))

(defmethod g/sin [::v/real] [a] (Math/sin a))
(defmethod g/cos [::v/real] [a] (Math/cos a))
(defmethod g/sin [::v/real] [a] (if (g/zero? a) 0 (Math/sin a)))
(defmethod g/cos [::v/real] [a] (if (g/zero? a) 1 (Math/cos a)))
(defmethod g/tan [::v/real] [a] (Math/tan a))

(defmethod g/cosh [::v/real] [a] (Math/cosh a))
Expand Down
11 changes: 7 additions & 4 deletions test/emmy/abstract/number_test.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -153,10 +153,13 @@
values like (cos 0) can be exactly evaluated.")))

(checking "inexact numbers" 100 [x sg/native-integral]
(is (= (+ 1 (Math/cos x))
(g/+ 1 (g/cos x)))
"You get a floating-point inexact result by calling generic fns
on a number directly, by comparison."))
(if (g/zero? x)
(is (= 2 (g/+ 1 (g/cos x)))
"special-cased exact output at 0")
(is (= (+ 1 (Math/cos x))
(g/+ 1 (g/cos x)))
"You get a floating-point inexact result by calling generic fns
on a number directly, by comparison.")))

(testing "literal-number properly prints wrapped sequences, even if they're lazy."
(is (= "(* 2 x)"
Expand Down
72 changes: 36 additions & 36 deletions test/emmy/calculus/covariant_test.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -48,24 +48,24 @@
(-> (simplify expr)
(x/substitute '(up x0 y0 z0) 'p)))]

(is (= '(+ (* (Y↑0 p) (((partial 0) w_0) p) (X↑0 p))
(* (Y↑0 p) (w_0 p) (((partial 0) X↑0) p))
(* (Y↑0 p) (w_1 p) (((partial 0) X↑1) p))
(* (Y↑0 p) (w_2 p) (((partial 0) X↑2) p))
(* (Y↑0 p) (((partial 1) w_0) p) (X↑1 p))
(* (Y↑0 p) (((partial 2) w_0) p) (X↑2 p))
(* (X↑0 p) (Y↑1 p) (((partial 0) w_1) p))
(* (X↑0 p) (Y↑2 p) (((partial 0) w_2) p))
(* (w_0 p) (Y↑1 p) (((partial 1) X↑0) p))
(* (w_0 p) (Y↑2 p) (((partial 2) X↑0) p))
(* (w_1 p) (Y↑1 p) (((partial 1) X↑1) p))
(* (w_1 p) (Y↑2 p) (((partial 2) X↑1) p))
(is (= '(+ (* (w_2 p) (Y↑2 p) (((partial 2) X↑2) p))
(* (w_2 p) (Y↑1 p) (((partial 1) X↑2) p))
(* (w_2 p) (Y↑2 p) (((partial 2) X↑2) p))
(* (X↑1 p) (Y↑1 p) (((partial 1) w_1) p))
(* (X↑1 p) (Y↑2 p) (((partial 1) w_2) p))
(* (X↑2 p) (Y↑1 p) (((partial 2) w_1) p))
(* (X↑2 p) (Y↑2 p) (((partial 2) w_2) p)))
(* (w_2 p) (Y↑0 p) (((partial 0) X↑2) p))
(* (Y↑2 p) (((partial 0) w_2) p) (X↑0 p))
(* (Y↑2 p) (w_1 p) (((partial 2) X↑1) p))
(* (Y↑2 p) (w_0 p) (((partial 2) X↑0) p))
(* (Y↑2 p) (((partial 1) w_2) p) (X↑1 p))
(* (Y↑2 p) (((partial 2) w_2) p) (X↑2 p))
(* (Y↑1 p) (X↑0 p) (((partial 0) w_1) p))
(* (Y↑1 p) (w_1 p) (((partial 1) X↑1) p))
(* (Y↑1 p) (w_0 p) (((partial 1) X↑0) p))
(* (Y↑1 p) (X↑1 p) (((partial 1) w_1) p))
(* (Y↑1 p) (X↑2 p) (((partial 2) w_1) p))
(* (Y↑0 p) (X↑0 p) (((partial 0) w_0) p))
(* (Y↑0 p) (w_1 p) (((partial 0) X↑1) p))
(* (Y↑0 p) (w_0 p) (((partial 0) X↑0) p))
(* (Y↑0 p) (X↑1 p) (((partial 1) w_0) p))
(* (Y↑0 p) (X↑2 p) (((partial 2) w_0) p)))
(present
((((g/Lie-derivative X) w) Y) R3-rect-point))))

Expand All @@ -92,14 +92,14 @@
(-> (simplify expr)
(x/substitute '(up x0 y0) 'p)))]

(is (= '(+ (* -1 (Y↑0 p) (((partial 0) f) p) (((partial 0) X↑0) p))
(* -1 (Y↑0 p) (((partial 1) f) p) (((partial 0) X↑1) p))
(* (((partial 0) f) p) (X↑1 p) (((partial 1) Y↑0) p))
(* (((partial 0) f) p) (((partial 0) Y↑0) p) (X↑0 p))
(* -1 (((partial 0) f) p) (Y↑1 p) (((partial 1) X↑0) p))
(* (X↑1 p) (((partial 1) f) p) (((partial 1) Y↑1) p))
(* (((partial 1) f) p) (X↑0 p) (((partial 0) Y↑1) p))
(* -1 (((partial 1) f) p) (Y↑1 p) (((partial 1) X↑1) p)))
(is (= '(+ (* (((partial 1) f) p) (((partial 0) Y↑1) p) (X↑0 p))
(* -1 (((partial 1) f) p) (Y↑1 p) (((partial 1) X↑1) p))
(* -1 (((partial 1) f) p) (Y↑0 p) (((partial 0) X↑1) p))
(* (((partial 1) f) p) (((partial 1) Y↑1) p) (X↑1 p))
(* (X↑0 p) (((partial 0) f) p) (((partial 0) Y↑0) p))
(* -1 (Y↑1 p) (((partial 0) f) p) (((partial 1) X↑0) p))
(* -1 (Y↑0 p) (((partial 0) f) p) (((partial 0) X↑0) p))
(* (X↑1 p) (((partial 0) f) p) (((partial 1) Y↑0) p)))
(present
((((g/Lie-derivative X) Y) f) R2-rect-point))))

Expand All @@ -114,7 +114,7 @@

;; we only need linear terms in phi_t(x)

;; Perhaps
;; Perhaps

;; phi_t(x) = (I + t v(I))(x)

Expand Down Expand Up @@ -186,14 +186,14 @@
present (fn [expr]
(-> (simplify expr)
(x/substitute '(up q_x q_y) 'p)))]
(is (= '(+ (* -1 (Y↑0 p) (((partial 0) f) p) (((partial 0) X↑0) p))
(* -1 (Y↑0 p) (((partial 1) f) p) (((partial 0) X↑1) p))
(* (((partial 0) f) p) (((partial 0) Y↑0) p) (X↑0 p))
(* -1 (((partial 0) f) p) (Y↑1 p) (((partial 1) X↑0) p))
(* (((partial 0) f) p) (((partial 1) Y↑0) p) (X↑1 p))
(* (((partial 1) f) p) (X↑0 p) (((partial 0) Y↑1) p))
(is (= '(+ (* (((partial 1) f) p) (((partial 0) Y↑1) p) (X↑0 p))
(* -1 (((partial 1) f) p) (Y↑1 p) (((partial 1) X↑1) p))
(* (((partial 1) f) p) (X↑1 p) (((partial 1) Y↑1) p)))
(* -1 (((partial 1) f) p) (Y↑0 p) (((partial 0) X↑1) p))
(* (((partial 1) f) p) (((partial 1) Y↑1) p) (X↑1 p))
(* (X↑0 p) (((partial 0) f) p) (((partial 0) Y↑0) p))
(* -1 (Y↑1 p) (((partial 0) f) p) (((partial 1) X↑0) p))
(* -1 (Y↑0 p) (((partial 0) f) p) (((partial 0) X↑0) p))
(* (X↑1 p) (((partial 0) f) p) (((partial 1) Y↑0) p)))
(present
((D (fn [t]
(- ((Y f) ((phiX t) m_0))
Expand All @@ -207,7 +207,7 @@
((Y (compose f (phiX t))) m_0))))
0)))))

(is (= 0 (simplify
(is (= 0 (simplify
(- result-via-Lie
((D (fn [t]
(- ((Y f) ((phiX t) m_0))
Expand Down Expand Up @@ -750,7 +750,7 @@
(is (= '(down
(+ (* -1 (cos (theta t)) (sin (theta t)) (expt ((D phi) t) 2))
(((expt D 2) theta) t))
(+ (* 2 (cos (theta t)) ((D theta) t) (sin (theta t)) ((D phi) t))
(+ (* 2 (cos (theta t)) (sin (theta t)) ((D phi) t) ((D theta) t))
(* (expt (sin (theta t)) 2) (((expt D 2) phi) t))))
(g/freeze
(simplify
Expand Down Expand Up @@ -813,7 +813,7 @@
;; So \Gammar_{\theta \theta} = -r, \Gamma\theta_{\theta \theta} = 0
;;
;; These are correct Christoffel symbols...
)))))
)))))

(defn CD
"Computation of Covariant derivatives by difference quotient. [[CD]] is parallel
Expand Down
40 changes: 20 additions & 20 deletions test/emmy/calculus/form_field_test.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -331,18 +331,18 @@
((((g/square ff/d) (m/literal-scalar-field 'f R3-rect)) X Y)
R3-cyl-point))))

(is (= '(+ (* (X↑0 p) (Y↑1 p) (((partial 0) w_1) p))
(* -1 (X↑0 p) (Y↑1 p) (((partial 1) w_0) p))
(* (X↑0 p) (Y↑2 p) (((partial 0) w_2) p))
(is (= '(+ (* (X↑0 p) (Y↑2 p) (((partial 0) w_2) p))
(* -1 (X↑0 p) (Y↑2 p) (((partial 2) w_0) p))
(* -1 (X↑1 p) (((partial 0) w_1) p) (Y↑0 p))
(* (X↑1 p) (((partial 1) w_0) p) (Y↑0 p))
(* (X↑0 p) (Y↑1 p) (((partial 0) w_1) p))
(* -1 (X↑0 p) (Y↑1 p) (((partial 1) w_0) p))
(* (X↑1 p) (Y↑2 p) (((partial 1) w_2) p))
(* -1 (X↑1 p) (Y↑2 p) (((partial 2) w_1) p))
(* -1 (X↑2 p) (Y↑1 p) (((partial 1) w_2) p))
(* (X↑2 p) (Y↑1 p) (((partial 2) w_1) p))
(* -1 (X↑1 p) (((partial 0) w_1) p) (Y↑0 p))
(* (X↑1 p) (((partial 1) w_0) p) (Y↑0 p))
(* -1 (X↑2 p) (((partial 0) w_2) p) (Y↑0 p))
(* (X↑2 p) (((partial 2) w_0) p) (Y↑0 p)))
(* (X↑2 p) (((partial 2) w_0) p) (Y↑0 p))
(* -1 (X↑2 p) (Y↑1 p) (((partial 1) w_2) p))
(* (X↑2 p) (Y↑1 p) (((partial 2) w_1) p)))
(-> (((ff/d w) X Y) R3-rect-point)
(simplify)
(x/substitute '(up x0 y0 z0) 'p))))
Expand All @@ -353,24 +353,24 @@
(ff/wedge dy dz))
(* (m/literal-scalar-field 'omega_2 R3-rect)
(ff/wedge dz dx)))]
(is (= '(+ (* (X↑0 p) (Y↑1 p) (Z↑2 p) (((partial 0) omega_1) p))
(* (X↑0 p) (Y↑1 p) (Z↑2 p) (((partial 1) omega_2) p))
(* (X↑0 p) (Y↑1 p) (Z↑2 p) (((partial 2) omega_0) p))
(* -1 (X↑0 p) (Y↑2 p) (((partial 0) omega_1) p) (Z↑1 p))
(* -1 (X↑0 p) (Y↑2 p) (((partial 1) omega_2) p) (Z↑1 p))
(* -1 (X↑0 p) (Y↑2 p) (((partial 2) omega_0) p) (Z↑1 p))
(is (= '(+ (* -1 (X↑0 p) (Y↑2 p) (Z↑1 p) (((partial 0) omega_1) p))
(* -1 (X↑0 p) (Y↑2 p) (Z↑1 p) (((partial 1) omega_2) p))
(* -1 (X↑0 p) (Y↑2 p) (Z↑1 p) (((partial 2) omega_0) p))
(* (X↑0 p) (Y↑1 p) (((partial 0) omega_1) p) (Z↑2 p))
(* (X↑0 p) (Y↑1 p) (((partial 1) omega_2) p) (Z↑2 p))
(* (X↑0 p) (Y↑1 p) (((partial 2) omega_0) p) (Z↑2 p))
(* (X↑1 p) (Y↑2 p) (((partial 0) omega_1) p) (Z↑0 p))
(* (X↑1 p) (Y↑2 p) (((partial 1) omega_2) p) (Z↑0 p))
(* (X↑1 p) (Y↑2 p) (((partial 2) omega_0) p) (Z↑0 p))
(* -1 (X↑1 p) (Y↑0 p) (Z↑2 p) (((partial 0) omega_1) p))
(* -1 (X↑1 p) (Y↑0 p) (Z↑2 p) (((partial 1) omega_2) p))
(* -1 (X↑1 p) (Y↑0 p) (Z↑2 p) (((partial 2) omega_0) p))
(* -1 (X↑1 p) (Y↑0 p) (((partial 0) omega_1) p) (Z↑2 p))
(* -1 (X↑1 p) (Y↑0 p) (((partial 1) omega_2) p) (Z↑2 p))
(* -1 (X↑1 p) (Y↑0 p) (((partial 2) omega_0) p) (Z↑2 p))
(* -1 (X↑2 p) (Y↑1 p) (((partial 0) omega_1) p) (Z↑0 p))
(* -1 (X↑2 p) (Y↑1 p) (((partial 1) omega_2) p) (Z↑0 p))
(* -1 (X↑2 p) (Y↑1 p) (((partial 2) omega_0) p) (Z↑0 p))
(* (X↑2 p) (Y↑0 p) (((partial 0) omega_1) p) (Z↑1 p))
(* (X↑2 p) (Y↑0 p) (((partial 1) omega_2) p) (Z↑1 p))
(* (X↑2 p) (Y↑0 p) (((partial 2) omega_0) p) (Z↑1 p)))
(* (X↑2 p) (Y↑0 p) (Z↑1 p) (((partial 0) omega_1) p))
(* (X↑2 p) (Y↑0 p) (Z↑1 p) (((partial 1) omega_2) p))
(* (X↑2 p) (Y↑0 p) (Z↑1 p) (((partial 2) omega_0) p)))
(-> (((ff/d omega) X Y Z) R3-rect-point)
(simplify)
(x/substitute '(up x0 y0 z0) 'p))))
Expand Down
20 changes: 10 additions & 10 deletions test/emmy/calculus/map_test.cljc
Original file line number Diff line number Diff line change
Expand Up @@ -90,10 +90,10 @@ and the differentials of coordinate functions."
μ (m/literal-manifold-map 'μ R1-rect R2-rect)
f (man/literal-manifold-function 'f R2-rect)]

(is (= '(+ (* (((partial 0) f) (up (μ↑0 τ) (μ↑1 τ)))
((D μ↑0) τ))
(* (((partial 1) f) (up (μ↑0 τ) (μ↑1 τ)))
((D μ↑1) τ)))
(is (= '(+ (* (((partial 1) f) (up (μ↑0 τ) (μ↑1 τ)))
((D μ↑1) τ))
(* (((partial 0) f) (up (μ↑0 τ) (μ↑1 τ)))
((D μ↑0) τ)))
(simplify
((((m/differential μ) d:dt) f)
((man/point R1-rect) 'τ)))))
Expand All @@ -120,10 +120,10 @@ and the differentials of coordinate functions."

;; "However, if we kludge the correct argument it gives the expected
;; answer."
(is (= '(/ (+ (* ((D μ↑0) τ) (e1↑1 (up x0 y0)))
(* -1 ((D μ↑1) τ) (e1↑0 (up x0 y0))))
(+ (* (e1↑1 (up x0 y0)) (e0↑0 (up x0 y0)))
(* -1 (e1↑0 (up x0 y0)) (e0↑1 (up x0 y0)))))
(is (= '(/ (+ (* -1 ((D μ↑1) τ) (e1↑0 (up x0 y0)))
(* ((D μ↑0) τ) (e1↑1 (up x0 y0))))
(+ (* -1 (e1↑0 (up x0 y0)) (e0↑1 (up x0 y0)))
(* (e1↑1 (up x0 y0)) (e0↑0 (up x0 y0)))))
(simplify
(((nth edual 0)
(vf/procedure->vector-field
Expand All @@ -142,8 +142,8 @@ and the differentials of coordinate functions."
(man/chart R1-rect))
f (f/compose (af/literal-function 'f '(-> (UP Real Real) Real))
(man/chart S2-spherical))]
(is (= '(+ (* (((partial 0) f) (up (θ τ) (φ τ))) ((D θ) τ))
(* (((partial 1) f) (up (θ τ) (φ τ))) ((D φ) τ)))
(is (= '(+ (* (((partial 1) f) (up (θ τ) (φ τ))) ((D φ) τ))
(* (((partial 0) f) (up (θ τ) (φ τ))) ((D θ) τ)))
(simplify ((((m/differential μ) d:dt) f)
((man/point R1-rect) 'τ)))))

Expand Down
Loading
Loading