-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_stl_4_ship_track.py
1690 lines (1458 loc) · 69.6 KB
/
run_stl_4_ship_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from lib_stl_core import *
from matplotlib.patches import Polygon, Rectangle, Ellipse
from matplotlib.collections import PatchCollection
plt.rcParams.update({'font.size': 12})
import utils
from utils import to_np, uniform_tensor, rand_choice_tensor, generate_gif, \
check_pts_collision, check_seg_collision, soft_step, to_torch, pts_in_poly, seg_int_poly, build_relu_nn, get_exp_dir, eval_proc
from utils import xyr_2_Ab, xxyy_2_Ab
from lib_cem import solve_cem_func
from utils_mbrl import get_mbrl_models, get_mbrl_u
def soft_step(x):
return (torch.tanh(500 * x) + 1)/2
class Policy(nn.Module):
def __init__(self, args):
super(Policy, self).__init__()
self.args = args
# input (x, y, phi, u, v, r, obs_x, obs_y, obs_r, T)
# output (acc)
input_dim = 10
output_dim = 2 * args.nt
self.net = build_relu_nn(input_dim, output_dim, args.hiddens, activation_fn=nn.ReLU)
def forward(self, x):
num_samples = x.shape[0]
u = self.net(x).reshape(num_samples, args.nt, -1)
u0 = torch.tanh(u[..., 0]) * args.thrust_max
u1 = torch.tanh(u[..., 1]) * args.delta_max
uu = torch.stack([u0, u1], dim=-1)
return uu
def dynamics(x0, u, include_first=False):
t = u.shape[1]
x = x0.clone()
if include_first:
segs=[x0]
else:
segs = []
for ti in range(t):
new_x = dynamics_s(x, u[:, ti], num=args.stl_sim_steps)
segs.append(new_x)
x = new_x
return torch.stack(segs, dim=1)
def dynamics_s(x, uu, num=1):
for tti in range(num):
dt = (args.dt/num)
new_x = torch.zeros_like(x)
# (x, y, phi, u, v, r)
new_dx = x[:, 3] * torch.cos(x[:, 2]) - x[:, 4] * torch.sin(x[:, 2])
new_dy = x[:, 3] * torch.sin(x[:, 2]) + x[:, 4] * torch.cos(x[:, 2])
new_dphi = x[:, 5]
new_du = uu[:, 0]
new_dv = uu[:, 1] * 0.01
new_dr = uu[:, 1] * 0.5
new_dT = -soft_step(x[:, 1]**2-args.track_thres**2)
zeros = 0 * new_dx
dsdt = torch.stack([new_dx, new_dy, new_dphi, new_du, new_dv, new_dr] + [zeros, zeros, zeros, new_dT], dim=-1)
new_x = x + dsdt * dt
new_xx = new_x.clone()
new_xx[:, 2] = torch.clamp(new_x[:, 2], -args.s_phimax, args.s_phimax)
new_xx[:, 3] = torch.clamp(new_x[:, 3], args.s_umin, args.s_umax)
new_xx[:, 4] = torch.clamp(new_x[:, 4], -args.s_vmax, args.s_vmax)
new_xx[:, 5] = torch.clamp(new_x[:, 5], -args.s_rmax, args.s_rmax)
x = new_xx
return new_xx
def get_rl_xs_us(x, policy, nt, include_first=False):
xs = []
us = []
if include_first:
xs.append(x)
dt_minus = 0
for ti in range(nt):
tt1=time.time()
if args.rl:
u, _ = policy.predict(x.cpu(), deterministic=True)
u = torch.from_numpy(u)
else:
if args.mbpo:
u = get_mbrl_u(x, None, policy, mbpo=True)
elif args.pets:
u_list=[]
for iii in range(x.shape[0]):
u = get_mbrl_u(x[iii], None, policy, mbpo=False)
u_list.append(u)
u = torch.stack(u_list, dim=0)
u[..., 0] = torch.clip(u[..., 0] * args.thrust_max, -args.thrust_max, args.thrust_max)
u[..., 1] = torch.clip(u[..., 1] * args.delta_max, -args.delta_max, args.delta_max)
u = u.cuda()
new_x = dynamics_s(x, u, num=args.stl_sim_steps)
xs.append(new_x)
us.append(u)
x = new_x
tt2=time.time()
if ti > 0:
dt_minus += tt2-tt1
xs = torch.stack(xs, dim=1)
us = torch.stack(us, dim=1) # (N, 2) -> (N, T, 2)
return xs, us, dt_minus
def initialize_x_cycle(n, is_cbf=False):
scene_type = rand_choice_tensor([0, 1, 2, 3], (n, 1))
# without obs case
s0_x = uniform_tensor(0, 0, (n, 1))
if args.origin_sampling or args.origin_sampling2 or args.origin_sampling3:
s0_y = uniform_tensor(-args.river_width/2, args.river_width/2, (n, 1))
s0_phi = uniform_tensor(-args.s_phimax, args.s_phimax, (n, 1))
else:
s0_y = uniform_tensor(-0.5, 0.5, (n, 1))
s0_phi = uniform_tensor(-args.s_phimax/2, args.s_phimax/2, (n, 1))
s0_u = uniform_tensor(args.s_umin, args.s_umax, (n, 1))
s0_v = uniform_tensor(-args.s_vmax, args.s_vmax, (n, 1))
s0_r = uniform_tensor(-args.s_rmax, args.s_rmax, (n, 1))
s0_obs_x = uniform_tensor(-5, -5, (n, 1))
s0_obs_y = uniform_tensor(args.obs_ymin, args.obs_ymax, (n, 1))
s0_obs_r = uniform_tensor(args.obs_rmin, args.obs_rmax, (n, 1))
if args.origin_sampling:
s0_obs_T = rand_choice_tensor([i * args.dt for i in range(1, args.tmax+1)], (n, 1))
else:
s0_obs_T = rand_choice_tensor([i * args.dt for i in range(1, 10)], (n, 1))
# far from obs case
s1_x = uniform_tensor(0, 0, (n, 1))
if args.origin_sampling or args.origin_sampling2 or args.origin_sampling3:
s1_y = uniform_tensor(-args.river_width/2, args.river_width/2, (n, 1))
s1_phi = uniform_tensor(-args.s_phimax, args.s_phimax, (n, 1))
else:
s1_y = uniform_tensor(-0.5, 0.5, (n, 1))
s1_phi = uniform_tensor(-args.s_phimax/2, args.s_phimax/2, (n, 1))
s1_u = uniform_tensor(args.s_umin, args.s_umax, (n, 1))
s1_v = uniform_tensor(-args.s_vmax, args.s_vmax, (n, 1))
s1_r = uniform_tensor(-args.s_rmax, args.s_rmax, (n, 1))
s1_obs_x = uniform_tensor(5, args.obs_xmax, (n, 1))
s1_obs_y = uniform_tensor(args.obs_ymin, args.obs_ymax, (n, 1))
s1_obs_r = uniform_tensor(args.obs_rmin, args.obs_rmax, (n, 1))
if args.origin_sampling:
s1_obs_T = rand_choice_tensor([i * args.dt for i in range(1, args.tmax+1)], (n, 1))
elif args.origin_sampling3:
s1_obs_T = rand_choice_tensor([i * args.dt for i in range(10, args.tmax+1)], (n, 1))
else:
s1_obs_T = rand_choice_tensor([i * args.dt for i in range(12, args.tmax+1)], (n, 1))
ymin = 0.8
ymax = args.river_width/2
flip = rand_choice_tensor([-1, 1], (n, 1))
# closer from obs case (before meet)
s2_x = uniform_tensor(0, 0, (n, 1))
if args.origin_sampling or args.origin_sampling2 or args.origin_sampling3:
s2_y = uniform_tensor(-args.river_width/2, args.river_width/2, (n, 1))
else:
s2_y = uniform_tensor(ymin, ymax, (n, 1)) * flip
s2_phi = uniform_tensor(-args.s_phimax, args.s_phimax, (n, 1))
s2_u = uniform_tensor(args.s_umin, args.s_umax, (n, 1))
s2_v = uniform_tensor(-args.s_vmax, args.s_vmax, (n, 1))
s2_r = uniform_tensor(-args.s_rmax, args.s_rmax, (n, 1))
s2_obs_x = uniform_tensor(0, 5, (n, 1))
s2_obs_y = uniform_tensor(args.obs_ymin, args.obs_ymax, (n, 1))
s2_obs_r = uniform_tensor(args.obs_rmin, args.obs_rmax, (n, 1))
if args.origin_sampling:
s2_obs_T = rand_choice_tensor([i * args.dt for i in range(1, args.tmax+1)], (n, 1))
elif args.origin_sampling3:
s2_obs_T = rand_choice_tensor([i * args.dt for i in range(8, 15)], (n, 1))
else:
s2_obs_T = rand_choice_tensor([i * args.dt for i in range(10, 15)], (n, 1))
# closer from obs case (after meet)
s3_x = uniform_tensor(0, 0, (n, 1))
if args.origin_sampling or args.origin_sampling2 or args.origin_sampling3:
s3_y = uniform_tensor(-args.river_width/2, args.river_width/2, (n, 1))
else:
s3_y = uniform_tensor(ymin, ymax, (n, 1)) * flip
s3_phi = uniform_tensor(-args.s_phimax, args.s_phimax, (n, 1))
s3_u = uniform_tensor(args.s_umin, args.s_umax, (n, 1))
s3_v = uniform_tensor(-args.s_vmax, args.s_vmax, (n, 1))
s3_r = uniform_tensor(-args.s_rmax, args.s_rmax, (n, 1))
s3_obs_x = uniform_tensor(-1, 0, (n, 1))
s3_obs_y = uniform_tensor(args.obs_ymin, args.obs_ymax, (n, 1))
s3_obs_r = uniform_tensor(args.obs_rmin, args.obs_rmax, (n, 1))
if args.origin_sampling:
s3_obs_T = rand_choice_tensor([i * args.dt for i in range(1, args.tmax+1)], (n, 1))
elif args.origin_sampling3:
s3_obs_T = rand_choice_tensor([i * args.dt for i in range(5, 12)], (n, 1))
else:
s3_obs_T = rand_choice_tensor([i * args.dt for i in range(8, 12)], (n, 1))
x = mux(scene_type, s0_x, s1_x, s2_x, s3_x)
y = mux(scene_type, s0_y, s1_y, s2_y, s3_y)
phi = mux(scene_type, s0_phi, s1_phi, s2_phi, s3_phi)
u = mux(scene_type, s0_u, s1_u, s2_u, s3_u)
v = mux(scene_type, s0_v, s1_v, s2_v, s3_v)
r = mux(scene_type, s0_r, s1_r, s2_r, s3_r)
obs_x = mux(scene_type, s0_obs_x, s1_obs_x, s2_obs_x, s3_obs_x)
obs_y = mux(scene_type, s0_obs_y, s1_obs_y, s2_obs_y, s3_obs_y)
obs_r = mux(scene_type, s0_obs_r, s1_obs_r, s2_obs_r, s3_obs_r)
obs_T = mux(scene_type, s0_obs_T, s1_obs_T, s2_obs_T, s3_obs_T)
rand_zero = rand_choice_tensor([0, 1], (n, 1))
if is_cbf:
y = y * 1.2
res = torch.cat([x, y, phi, u, v, r, obs_x, obs_y, obs_r, obs_T], dim=1)
return res
def mux(scene_type, x0, x1, x2, x3):
return (scene_type==0).float() * x0 + (scene_type==1).float() * x1 + (scene_type==2).float() * x2 + (scene_type==3).float() * x3
def initialize_x(n):
x_list = []
total_n = 0
while(total_n<n):
x_init = initialize_x_cycle(n)
safe_bloat = args.bloat_d
dd = 5
n_res = 100
crit_list = []
crit1 = torch.norm(x_init[:, :2] - x_init[:, 6:6+2], dim=-1) > x_init[:, 8] + safe_bloat
crit2 = torch.logical_not(torch.logical_and(x_init[:,1]>1.5, x_init[:,2]>0)) # too close from the river boundary
crit3 = torch.logical_not(torch.logical_and(x_init[:,1]<-1.5, x_init[:,2]<0)) # too close from the river boundary
if args.origin_sampling3:
# cannot be too close to the obstacle
crit4 = torch.logical_not(torch.logical_and(torch.logical_and(x_init[:,6]-x_init[:,0]<x_init[:,8]+0.5, x_init[:,6]-x_init[:,0]>0), torch.abs(x_init[:,1]-x_init[:,7])<x_init[:,8]))
# cannot be too close to the obstacle
crit7 = torch.logical_not(torch.logical_and(torch.logical_and(x_init[:,6]-x_init[:,0]<x_init[:,8]+1.5, x_init[:,6]-x_init[:,0]>0), torch.abs(x_init[:,1]-x_init[:,7])<0.3))
# should have enough time to escape
crit5 = torch.logical_not(torch.logical_and(x_init[:, 9] < 5 * args.dt, torch.abs(x_init[:,1]) > 1.5))
# too large angle
crit6 = torch.logical_not(torch.logical_or(
torch.logical_and(x_init[:, 1] > 1.5, x_init[:, 2] > args.s_phimax/2),
torch.logical_and(x_init[:, 1] < -1.5, x_init[:, 2] < -args.s_phimax/2),
))
valids_indices = torch.where(torch.all(torch.stack([crit1, crit2, crit3, crit4, crit5, crit6, crit7], dim=-1),dim=-1)>0)
else:
valids_indices = torch.where(torch.all(torch.stack([crit1, crit2, crit3], dim=-1),dim=-1)>0)
x_val = x_init[valids_indices]
total_n += x_val.shape[0]
x_list.append(x_val)
x_list = torch.cat(x_list, dim=0)[:n]
return x_list
class Net(nn.Module):
def __init__(self, args):
super(Net, self).__init__()
self.args = args
input_dim = 10
output_dim = 2
self.net = build_relu_nn(input_dim, output_dim, args.net_hiddens, activation_fn=nn.ReLU)
def forward(self, x, k1=None, k2=None, k3=None, k4=None, k5=None):
num_samples = x.shape[0]
x_enc = x.clone()
x_enc[:, 0] = 0
x_enc[:, 1:6] = x[:, 1:6]
x_enc[:, 6] = x[:, 6] - x[:, 0]
x_enc[:, 7] = x[:, 7]
x_enc[:, 8] = x[:, 8]
x_enc[:, 9] = x[:, 9]
u = self.net(x_enc).reshape(num_samples, -1)
if args.test_pid:
uref0 = - k1 * (x_enc[:, 3] - 4)
uref1 = - k2 * (x_enc[:, 1] - 0) - k3 * (x_enc[:, 2] - 0) - k4 * (x_enc[:, 3] - 0) - k5* (x_enc[:, 4] - 0)
u0 = torch.clip(torch.tanh(u[..., 0]) * args.thrust_max * 0 + uref0, -args.thrust_max, args.thrust_max)
u1 = torch.clip(torch.tanh(u[..., 1]) * args.delta_max * 0 + uref1, -args.delta_max, args.delta_max)
else:
uref0 = - 5 * (x_enc[:, 3] - 4)
uref1 = - 3 * (x_enc[:, 1] - 0) - 5 * (x_enc[:, 2] - 0)
u0 = torch.clip(torch.tanh(u[..., 0]) * args.thrust_max + uref0, -args.thrust_max, args.thrust_max)
u1 = torch.clip(torch.tanh(u[..., 1]) * args.delta_max + uref1, -args.delta_max, args.delta_max)
uu = torch.stack([u0, u1], dim=-1)
return uu
class CBF(nn.Module):
def __init__(self, args):
super(CBF, self).__init__()
self.args = args
input_dim = 10
output_dim = 1
self.net = build_relu_nn(input_dim, output_dim, args.cbf_hiddens, activation_fn=nn.ReLU)
def forward(self, x):
num_samples = x.shape[0]
x_enc = x.clone()
x_enc[:, 0] = 0
x_enc[:, 1:6] = x[:, 1:6]
x_enc[:, 6] = x[:, 6] - x[:, 0]
x_enc[:, 7] = x[:, 7]
x_enc[:, 8] = x[:, 8]
x_enc[:, 9] = x[:, 9]
v = torch.tanh(self.net(x_enc))
tau = args.smoothing_factor
v_prior1 = torch.clip(torch.norm(x[..., :2] - x[..., 6:8], dim=-1)**2 - x[..., 8]**2, -10, 10)
v_prior3 = args.river_w*((args.river_width/2)**2 - (x[..., 1])**2)
v_prior = torch.minimum(v_prior1, v_prior3).reshape(x.shape[0], 1)
return v_prior * args.cbf_prior_w + v * args.cbf_nn_w
def mask_mean(x, mask):
# TODO comment
return torch.mean(x * mask) / torch.clip(torch.mean(mask), 1e-4)
def get_masks(x):
dist1 = torch.norm(x[..., :2] - x[..., 6:8], dim=-1) - x[..., 8]
dist3 = args.river_width/2 - torch.abs(x[..., 1])
safe_mask = torch.logical_and(dist1>=args.cbf_pos_bloat, dist3>=args.cbf_pos_bloat).float()
dang_mask = torch.logical_or(dist1<0, dist3<0).float()
mid_mask = (1 - safe_mask) * (1 - dang_mask)
return safe_mask, dang_mask, mid_mask
def check_safety(x):
dist1 = torch.norm(x[..., :2] - x[..., 6:8], dim=-1) - x[..., 8]
dist3 = args.river_width/2 - torch.abs(x[..., 1])
acc = torch.all(torch.logical_and(dist1>=0, dist3>=0), dim=-1).float()
inl = torch.all(dist3>=0, dim=-1).float()
return acc, inl
def check_safety_stl(x):
dist1 = torch.norm(x[..., :2] - x[..., 6:8], dim=-1) - x[..., 8]
dist3 = args.river_width/2 - torch.abs(x[..., 1])
acc = torch.all(torch.logical_and(torch.logical_and(dist1>=0, dist3>=0), x[..., 9]>=0), dim=-1).float()
inl = torch.all(dist3>=0, dim=-1).float()
return acc, inl
def train_traj_cbf(x_init, eta):
net = Net(args).cuda()
cbf = CBF(args).cuda()
if args.alternative or args.alternative2:
net_optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
cbf_optimizer = torch.optim.Adam(cbf.parameters(), lr=args.lr)
else:
optimizer = torch.optim.Adam(list(net.parameters()) + list(cbf.parameters()), lr=args.lr)
relu = nn.ReLU()
N = args.num_samples
T = args.nt
Nd = args.num_dense_sample
gamma = args.cbf_gamma
alpha = args.cbf_alpha
# state-wise training for cbf classification
x_dense = initialize_x_cycle(args.num_dense_sample, is_cbf=True).cuda()
only_traj_cls = not(args.both_state_cls or args.dense_state_cls)
only_traj_dec = not(args.both_state_dec or args.dense_state_dec)
for epi in range(args.epochs):
eta.update()
# episodic case
x = x_init.clone()
us = []
segs = [x]
X_DIM = x.shape[-1]
for ti in range(args.nt):
u = net(x)
new_x = dynamics_s(x, u, num=args.num_sim_steps)
segs.append(new_x)
us.append(u)
x = new_x.detach()
segs = torch.stack(segs, dim=1) # (N, T, 3)
us = torch.stack(us, dim=1) # (N, T, 2)
all_x_epi = segs
# dense evolution
curr_x_dense = x_dense
curr_u_dense = net(curr_x_dense)
next_x_dense = dynamics_s(curr_x_dense, curr_u_dense, num=args.num_sim_steps)
all_x_dense = torch.stack([curr_x_dense, next_x_dense], dim=1)
safe_mask_dense, dang_mask_dense, mid_mask_dense = get_masks(all_x_dense)
all_v_dense = cbf(all_x_dense.reshape(Nd * 2, X_DIM).detach()).reshape(Nd, 2)
curr_v_dense = cbf(curr_x_dense).reshape(Nd, 1)
next_v_dense = cbf(next_x_dense).reshape(Nd, 1)
# dense classification loss
loss_cbf_cls_dense = mask_mean(relu(gamma - all_v_dense), safe_mask_dense) + mask_mean(relu(all_v_dense + gamma), dang_mask_dense)
# dense decreasing loss
loss_cbf_dec_dense = torch.mean(relu((1 - alpha) * curr_v_dense - next_v_dense))
# episodic evolution
safe_mask_epi, dang_mask_epi, mid_mask_epi = get_masks(all_x_epi)
all_v_epi = cbf(all_x_epi.reshape(N * (T+1), X_DIM)).reshape(N, T+1)
curr_x_epi = all_x_epi[:, :-1].reshape(N*T, -1)
next_x_epi = all_x_epi[:, 1:].reshape(N*T, -1)
curr_v_epi = cbf(curr_x_epi).reshape(N, T)
next_v_epi = cbf(next_x_epi).reshape(N, T)
# episodic classification loss
loss_cbf_cls_epi = mask_mean(relu(gamma - all_v_epi), safe_mask_epi) + mask_mean(relu(all_v_epi + gamma), dang_mask_epi)
# episodic decreasing loss
loss_cbf_dec_epi = torch.mean(relu((1 - alpha) * curr_v_epi - next_v_epi))
if args.both_state_cls:
loss_cbf_cls = args.dense_ratio * loss_cbf_cls_dense + (1 - args.dense_ratio) * loss_cbf_cls_epi
elif args.dense_state_cls:
loss_cbf_cls = loss_cbf_cls_dense
else:
loss_cbf_cls = loss_cbf_cls_epi
if args.both_state_dec:
loss_cbf_dec = args.dense_ratio * loss_cbf_dec_dense + (1 - args.dense_ratio) * loss_cbf_dec_epi
elif args.dense_state_dec:
loss_cbf_dec = loss_cbf_dec_dense
else:
loss_cbf_dec = loss_cbf_dec_epi
loss_cbf_cls = loss_cbf_cls * args.cbf_cls_w
loss_cbf_dec = loss_cbf_dec * args.cbf_dec_w
u_loss = torch.mean(torch.norm(us, dim=-1)) * args.u_loss + torch.mean(torch.norm(curr_u_dense, dim=-1)) * args.u_loss
loss = loss_cbf_cls + loss_cbf_dec + u_loss
if args.alternative:
if epi % (args.alternative_freq * 2) < args.alternative_freq:
cbf_optimizer.zero_grad()
loss.backward()
cbf_optimizer.step()
else:
net_optimizer.zero_grad()
loss.backward()
net_optimizer.step()
elif args.alternative2:
if epi < args.epochs//2:
cbf_optimizer.zero_grad()
loss.backward()
cbf_optimizer.step()
else:
net_optimizer.zero_grad()
loss.backward()
net_optimizer.step()
else:
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc, inl = check_safety(segs)
acc_avg = torch.mean(acc)
inl_avg = torch.mean(inl)
if epi % args.print_freq == 0:
print("%s|%03d loss:%.3f cls:%.3f dec:%.3f u:%.3f acc:%.4f in:%.3f safe%.3f mid:%.3f dang:%.3f s:%.3f m:%.3f d:%.3f| dT:%s T:%s ETA:%s" % (
args.exp_dir_full.split("/")[-1], epi, loss.item(), loss_cbf_cls.item(), loss_cbf_dec.item(), u_loss.item(), #loss_debug.item(),
acc_avg.item(), inl_avg.item(),
torch.mean(safe_mask_dense).item(), torch.mean(mid_mask_dense).item(), torch.mean(dang_mask_dense).item(),
torch.mean(safe_mask_epi).item(), torch.mean(mid_mask_epi).item(), torch.mean(dang_mask_epi).item(),
eta.interval_str(), eta.elapsed_str(), eta.eta_str()))
# Save models
if epi % args.save_freq == 0:
torch.save(net.state_dict(), "%s/net_%05d.ckpt"%(args.model_dir, epi))
torch.save(cbf.state_dict(), "%s/cbf_%05d.ckpt"%(args.model_dir, epi))
if epi % args.viz_freq == 0 or epi == args.epochs - 1:
init_np = to_np(x_init)
seg_np = to_np(segs)
v_np = to_np(all_v_epi)
acc_np = to_np(acc)
sim_visualization(epi, init_np, seg_np, acc_np, v_np=v_np)
def sim_visualization(epi, init_np, seg_np, acc_np, v_np=None):
plt.figure(figsize=(12, 9))
col = 5
row = 5
bloat = 0.0
for i in range(row):
for j in range(col):
idx = i * col + j
ax = plt.subplot(row, col, idx+1)
idx = min(i * col + j, seg_np.shape[0]-1)
ax.add_patch(Rectangle([0, -args.canvas_h/2], args.canvas_w, args.canvas_h, color="green" if acc_np[idx]>0.5 else "red", alpha=0.1))
offset = 6
ax.add_patch(Ellipse([seg_np[idx, 0, offset], seg_np[idx, 0, offset + 1]], seg_np[idx, 0, offset + 2] * 2, seg_np[idx, 0, offset + 2] * 2,
label="obstacle", color="gray", alpha=0.8))
ax.add_patch(Ellipse([seg_np[idx, 0, 0], seg_np[idx, 0, 1]], 0.5, 0.5,
label="ego", color="blue", alpha=0.8))
plt.plot(seg_np[idx, :, 0], seg_np[idx, :, 1], label="trajectory", color="blue", linewidth=2, alpha=0.5)
for ti in range(0, args.nt, 2):
ax.text(seg_np[idx, ti, 0]+0.25, seg_np[idx, ti, 1]+0.25, "%.1f"%(seg_np[idx, ti, -1]), fontsize=6)
if v_np is not None:
plt.plot(seg_np[idx, :, 0], v_np[idx, :] * 1.8, label="CBF value (x1.8)", color="red", linewidth=2, alpha=0.3)
if idx==0:
plt.legend(fontsize=6, loc="lower right")
ax.axis("scaled")
plt.xlim(0-bloat, args.canvas_w+bloat)
plt.ylim(-args.canvas_h/2-bloat, args.canvas_h/2+bloat)
figname="%s/iter_%05d.png"%(args.viz_dir, epi)
plt.savefig(figname, bbox_inches='tight', pad_inches=0.1)
plt.close()
def solve_mpc(x_init):
import casadi
x_init = to_np(x_init)
u = None
# avoid obstacle
mpc_t1 = time.time()
opti = casadi.Opti()
mpc_max_iters = 10000
quiet = True
x = opti.variable(args.nt + 1, 6) # x, vx, dy
u = opti.variable(args.nt, 2) # a
gamma = opti.variable(args.nt, 4)
obs = x_init[0, 6:9]
obs_t = x_init[0, 9]
bloat = 0.1
# args.thrust_max, args.delta_max
# s_phimax
# s_umin, s_umax
# s_vmax
# s_rmax
for i in range(6):
x[0, i] = x_init[0, i]
for ti in range(args.nt):
# TODO small dts multi-steps
x[ti+1, 0] = x[ti, 0] + (x[ti, 3] * casadi.cos(x[ti, 2]) - x[ti, 4] * casadi.sin(x[ti, 2])) * args.dt
x[ti+1, 1] = x[ti, 1] + (x[ti, 3] * casadi.sin(x[ti, 2]) + x[ti, 4] * casadi.cos(x[ti, 2])) * args.dt
x[ti+1, 2] = x[ti, 2] + x[ti, 5] * args.dt
x[ti+1, 3] = x[ti, 3] + u[ti, 0] * args.dt
x[ti+1, 4] = x[ti, 4] + u[ti, 1] * 0.01 * args.dt
x[ti+1, 5] = x[ti, 5] + u[ti, 1] * 0.5 * args.dt
opti.subject_to(u[ti, 0] <= args.thrust_max)
opti.subject_to(u[ti, 0] >= -args.thrust_max)
opti.subject_to(u[ti, 1] <= args.delta_max)
opti.subject_to(u[ti, 1] >= -args.delta_max)
opti.subject_to(x[ti+1, 2] <= args.s_phimax)
opti.subject_to(x[ti+1, 2] >= -args.s_phimax)
opti.subject_to(x[ti+1, 3] <= args.s_umax)
opti.subject_to(x[ti+1, 3] >= args.s_umin)
opti.subject_to(x[ti+1, 4] <= args.s_vmax)
opti.subject_to(x[ti+1, 4] >= -args.s_vmax)
opti.subject_to(x[ti+1, 5] <= args.s_rmax)
opti.subject_to(x[ti+1, 5] >= -args.s_rmax)
opti.subject_to(x[ti+1, 1] <= args.river_width/2 + gamma[ti, 0])
opti.subject_to(x[ti+1, 1] >= -args.river_width/2 - gamma[ti, 1])
# avoid collision
opti.subject_to((x[ti+1, 0]-obs[0])**2+(x[ti+1, 1]-obs[1])**2 >= bloat + obs[2]**2 - gamma[ti, 2])
# get back to centerline
if obs_t < (ti+1)*args.dt:
opti.subject_to((x[ti+1, 1])**2 <= args.track_thres**2 + gamma[ti, 3])
loss = casadi.sumsqr(gamma) * 100000 + casadi.sumsqr(u) + casadi.sumsqr(x[:, 1]) * 100
opti.minimize(loss)
p_opts = {"expand": True}
s_opts = {"max_iter": mpc_max_iters, "tol": 1e-5}
if quiet:
p_opts["print_time"] = 0
s_opts["print_level"] = 0
s_opts["sb"] = "yes"
opti.solver("ipopt", p_opts, s_opts)
try:
sol1 = opti.solve()
except:
do_nothing=1
x_np = opti.debug.value(x)
u_np = opti.debug.value(u)
u_np[:, 0] = np.clip(u_np[:, 0], -args.thrust_max, args.thrust_max)
u_np[:, 1] = np.clip(u_np[:, 1], -args.delta_max, args.delta_max)
mpc_t2 = time.time()
print("%.4f seconds"%(mpc_t2-mpc_t1))
return to_torch(u_np[None, :]).cpu()
def gradient_solve(tti, x_init, stl, multi_test=False):
relu = torch.nn.ReLU()
# u_lat = torch.zeros(x_init.shape[0], args.nt).cuda().requires_grad_()
u_lat = torch.zeros(x_init.shape[0], args.nt, 2).requires_grad_()
x_init = x_init.cpu()
optimizer = torch.optim.Adam([u_lat], lr=args.grad_lr)
tt1=time.time()
prev_loss = None
for i in range(args.grad_steps):
u0 = torch.tanh(u_lat[..., 0]) * args.thrust_max
u1 = torch.tanh(u_lat[..., 1]) * args.delta_max
u = torch.stack([u0, u1], dim=-1)
seg = dynamics(x_init, u, include_first=True)
score = stl(seg, args.smoothing_factor)[:, :1]
acc = (stl(seg, args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
dist_loss = torch.mean(seg[..., 1]**2)
dist_loss = dist_loss * args.dist_w
loss = torch.mean(relu(0.5-score)) + dist_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i>0:
if abs(loss.item())<1e-5 or abs(prev_loss.item()-loss.item())<1e-5:
break
if i % (args.grad_steps//5) == 0 or i==-1:
print(i, loss.item())
prev_loss = loss.detach()
tt2=time.time()
print("%05d t:%.4f seconds"%(tti, tt2-tt1))
return u.detach().cuda()
def solve_planner(tti, iii, x_init):
from lib_pwlplan import plan, Node
from gurobipy import GRB
from utils import default_line, pid_control
tt1=time.time()
def func1(m, PWLs, di):
for i in range(args.nt):
m.addConstr(PWLs[0][i+1][0][1] - PWLs[0][i][0][1] <= 0.2)
m.addConstr(PWLs[0][i+1][0][1] - PWLs[0][i][0][1] >= -0.2)
if i>=1:
m.addConstr(PWLs[0][i+1][0][1] - PWLs[0][i-1][0][1] <= 0.2)
m.addConstr(PWLs[0][i+1][0][1] - PWLs[0][i-1][0][1] >= -0.2)
m.addConstr(PWLs[0][i+1][0][0] - PWLs[0][i][0][0] >= 0.3)
m.addConstr(PWLs[0][i+1][1] - PWLs[0][i][1] == args.dt)
return 1000 * sum((PWLs[0][i+1][0][1]-PWLs[0][i][0][1])**2 for i in range(nt)) + \
100*sum((PWLs[0][i+1][0][1])**2 for i in range(nt))
nt = args.nt
dt = args.dt
tmax = (nt+1)*dt
vmax = 10
bloat_r = 0.0
x_np = to_np(x_init)
obs_A0, obs_b0 = xyr_2_Ab(x_np[0, 6+0], x_np[0, 6+1], x_np[0, 6+2]+bloat_r, num_edges=8)
A_map, b_map = xxyy_2_Ab([-0.5, 20, -args.river_width/2, args.river_width/2])
A_track, b_track = xxyy_2_Ab([-0.5, 20, -args.track_thres-bloat_r, args.track_thres+bloat_r])
in_map = Node("mu", info={"A":A_map, "b":b_map})
within_track = Node("mu", info={"A":A_track, "b":b_track})
avoid0 = Node("negmu", info={"A":obs_A0, "b":obs_b0})
always_in_map = Node("A", deps=[in_map], info={"int":[0, tmax]})
always_avoid0 = Node("A", deps=[avoid0], info={"int":[0, tmax]})
t_remain = x_np[0, -1]
diverged = np.abs(x_np[0, 1]) > args.track_thres
if diverged:
specs = [Node("and", deps=[always_in_map, always_avoid0])]
else:
specs = [Node("and", deps=[always_in_map, always_avoid0])]
tt2=time.time()
x0s = [np.array([x_init[0, 0].item(), x_init[0, 1].item()])]
PWL, u_out = plan(x0s, specs, bloat=0.01, MIPGap=0.05, num_segs=args.nt, tmax=tmax, vmax=vmax, extra_fn_list=[func1], return_u=True, quiet=True)
tt3=time.time()
if PWL[0] is None:
print("Failed")
pwl_torch = default_line(x_init, args.nt)
else:
pwl_torch = torch.tensor([PWL[0][i][0] for i in range(nt+1)]).unsqueeze(0).cuda()
## rollout
x_sim = x_init.cpu()
pwl_torch_cpu = pwl_torch.cpu()
u_segs=[]
for i in range(args.nt):
u_out = pid_control(x_sim, pwl_torch_cpu)
x_sim = dynamics_s(x_sim, u_out, num=args.stl_sim_steps)
u_segs.append(u_out)
u_segs = torch.stack(u_segs, dim=1).cuda()
tt4=time.time()
return u_segs, pwl_torch
def solve_cem(ti, x_input, stl, args):
def dynamics_step_func(x, u):
return dynamics_s(x, u, num=args.stl_sim_steps)
def reward_func(trajs):
return stl(trajs, args.smoothing_factor, d={"hard":True})[:, 0]
u_min = torch.tensor([-args.thrust_max, -args.delta_max]).cuda()
u_max = torch.tensor([args.thrust_max, args.delta_max]).cuda()
u, _, info = solve_cem_func(
x_input, state_dim=x_input.shape[-1], nt=args.nt, action_dim=2,
num_iters=500, n_cand=10000, n_elites=100, policy_type="direct",
dynamics_step_func=dynamics_step_func, reward_func=reward_func,
transform=None, u_clip=(u_min, u_max), seed=None, args=None,
extra_dict=None, quiet=False, device="gpu", visualize=False
)
return u
def ship_backup_demo(x_init, net_stl, net_cbf, rl_policy, stl, stl_safe, stl_list_debug, args):
# find the dangerous initial states
nt = args.test_nt
n_trials = args.num_trials
n_obs = 20
obs_dL = 12
reset_T = rand_choice_tensor(list(range(15, 16)), (n_trials, n_obs)) * args.dt
obs_list=[]
obs_x = x_init[0:1, 6]
for i in range(n_obs):
if i>0:
obs_x = obs_x + obs_dL
obs_y = 0 * obs_x + 0.2
else:
obs_x = obs_x * 0 + x_init[0:1, 0] + 4
obs_y = 0 * obs_x + 0.25
obs_r = obs_x * 0 + uniform_tensor(args.obs_rmin, args.obs_rmax, (1, )).cuda()
if i==1:
obs_r = 1.5*obs_r
reset_T[:, i] = rand_choice_tensor([20, 25], (1, )).cuda() * args.dt
obs = torch.cat([obs_x, obs_y, obs_r], dim=-1)
obs_list.append(obs)
obs_map = torch.stack(obs_list, dim=0) # (M, 3)
x_init[0:n_trials, 1] = uniform_tensor(args.obs_rmin-0.3, args.river_width/2-0.2, (n_trials,)).cuda() * rand_choice_tensor([-1,1.0], (n_trials, )).cuda()
x_init[0:n_trials, 2] = 0
x_init[0:n_trials, 3] = 5.0
x_init[0:n_trials, 4:6] = 0.0
x_init[0:n_trials, 6] = obs_map[0:1, 0]
x_init[0:n_trials, 7] = obs_map[0:1, 1]
x_init[0:n_trials, 8] = obs_map[0:1, 2]
x_init[0:n_trials, 9] = -5 * args.dt
x = x_init[0:n_trials].cpu()
base_i = [0] * n_trials
cd = [0] * n_trials
x_input = x.cuda()
x_input[:, 6] = x_input[:, 6] - x_input[:, 0]
x_input[:, 0] = 0
x_input[:, 6][torch.where(x_input[:, 6]>args.obs_xmax)] = -5
u = net_stl(x_input)
# let the ordinary control run once, and find unsafe cases
seg_out = dynamics(x.cpu(), u.cpu(), include_first=True)
acc_tmp = (stl(seg_out, args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
acc_safe_tmp = (stl_safe(seg_out, args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
acc_rate = torch.mean(acc_tmp)
safe_rate = torch.mean(acc_safe_tmp)
oot_rate = torch.mean((torch.any(seg_out[:, :, -1]<0, dim=1)).float(), dim=0)
print("safe:%.3f acc:%.3f oot:%.3f"%(safe_rate, acc_rate, oot_rate))
# statistics
seg_list=[]
metrics_str=["acc", "reward", "score", "t", "safety", "intime"]
metrics = {xx:[] for xx in metrics_str}
crash = np.zeros((nt, n_trials))
timeout = np.zeros((nt, n_trials))
prev_x_input = None
history=[]
cd_list=np.zeros((nt, n_trials))
acc_list=np.zeros((nt, n_trials))
# start the loop
for ti in range(nt):
if ti % 10 == 0:
print("ti=",ti)
print("t:%03d x:%.2f y:%.2f ph:%.2f | %.2f %.2f %.2f | %.2f %.2f r=%.2f T=%.2f || %d"%(
ti, x[0,0], x[0,1], x[0,2],
x[0,3], x[0,4], x[0,5],
x[0,6], x[0,7], x[0,8], x[0,9], cd[0]
))
shall_update = [False] * n_trials
updated_obs = [False] * n_trials
x_input = x.cuda()
# update the obstacles if needed
for i in range(n_trials):
t1_debug = time.time()
if obs_map[base_i[i],0]-x[i,0]<-1:
base_i[i]+=1
x[i,6:6+3] = obs_map[base_i[i]]
updated_obs[i]=True
if torch.norm(x[i, :2]-x[i, 6:8], dim=-1)<x[i, 8] or torch.abs(x[i,1]) > args.river_width/2:
print(x[i],torch.norm(x[i, :2]-x[i, 6:8], dim=-1),x[i, 8])
crash[ti, i] = 1
if x[i,9]<0:
timeout[ti, i] = 1
# get updated x_input
dx = x_input[i, 0]
x_input[i, 6] = x_input[i, 6] - dx
if x_input[i, 6] > args.obs_xmax:
x_input[i, 6] = -5
else:
if prev_x_input is not None and (prev_x_input[i, 6] == -5 or updated_obs[i]):
x[i, 9] = reset_T[i, base_i[i]]
print(ti, i, x[i,9])
x_input[i, 0] = x_input[i, 0] - dx
u_nn = net_stl(x_input)
u_real=[]
for i in range(n_trials):
cd[i] = 0 # for updated_obs
u_real.append(u_nn[i])
u_real = torch.stack(u_real, dim=0)
seg_out = dynamics(x.cpu(), u_real.cpu(), include_first=True)
stl_score_pre = (stl(seg_out, args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
k_list = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
if args.not_use_backup==False:
# when under unsafe
for i in range(n_trials):
if stl_score_pre[i]<1 and cd[i]<=0:
max_plan_t = 10
u_real[i] = 0.0
for plan_t in [1,4,len(k_list)-1]:
print(plan_t)
nt0 = plan_t
k0 = 1
k1 = k_list[plan_t]
a0 = np.linspace(-args.thrust_max, -args.thrust_max, k0)
a1 = np.linspace(-args.delta_max, args.delta_max, k1)
A0, A1 = np.meshgrid(a0,a1)
A0, A1 = A0.flatten(), A1.flatten()
li0 = [A0] * nt0
li1 = [A1] * nt0
a_seq0 = np.array(np.meshgrid(*li0)).reshape(nt0, -1).T
a_seq1 = np.array(np.meshgrid(*li1)).reshape(nt0, -1).T
a_seq = np.stack([a_seq0, a_seq1], axis=-1)
a_seq = torch.from_numpy(a_seq).float().cuda()
x_input_mul = torch.tile(x[i:i+1].cuda(), [a_seq.shape[0], 1])
seg0 = dynamics(x_input_mul, a_seq, include_first=True)
x_new = seg0[:, -1]
x_new_input = x_new.clone()
x_new_input[:, 6] = x_new_input[:, 6] - x_new_input[:, 0]
x_new_input[:, 0] = 0
u_output = net_stl(x_new_input).detach()
seg1 = dynamics(x_new, u_output[:, :args.nt-nt0], include_first=False)
seg = torch.cat([seg0, seg1], dim=1)
score_safe = torch.all(
torch.logical_and(
torch.norm(seg0[:, :, :2]-seg0[:, :, 6:8], dim=-1)>seg0[:, 0:1, 8]+0.1,
torch.abs(seg0[:, :, 1]) < args.river_width/2), dim=1
)
safe_idx = torch.where(score_safe)[0]
if safe_idx.shape[0]>0:
score_stl_smooth = stl(seg[safe_idx], args.smoothing_factor)[:, :1]
max_idx = torch.argmax(score_stl_smooth, dim=0)[0]
score_stl = (stl(seg[safe_idx], args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
u_real[i] = torch.cat([a_seq[safe_idx[max_idx]], u_output[safe_idx[max_idx], :args.nt-nt0]], dim=0)
cd[i] = plan_t
cd_list[ti, i] = cd[i]
if score_stl[max_idx] >0:
# find feasible
print("find feasible")
break
else:
if len(seg_list)>0:
print("PREV")
for ttti in range(args.nt+1):
print("i=%02d t=%02d x:%.2f y:%.2f th:%.2f | %.2f %.2f %.2f | x=%.2f y=%.2f r=%.2f T=%.2f | %.2f %.2f"%(
i, ttti, seg_list[-1][i,ttti,0], seg_list[-1][i,ttti,1], seg_list[-1][i,ttti,2], seg_list[-1][i,ttti,3],
seg_list[-1][i,ttti,4], seg_list[-1][i,ttti,5], seg_list[-1][i,ttti,6], seg_list[-1][i,ttti,7],
seg_list[-1][i,ttti,8], seg_list[-1][i,ttti,9],
u_prev[i,min(ttti,args.nt-1),0], u_prev[i,min(ttti,args.nt-1),1]
))
print("NOW")
# for ii in range(seg0.shape[0]):
for ii in [0, 2*(3**2), 2*(3**3), -1]:
for ttti in range(seg0.shape[1]):
print("i=%02d t=%02d x:%.2f y:%.2f th:%.2f | %.2f %.2f %.2f | x=%.2f y=%.2f r=%.2f T=%.2f | %.2f %.2f"%(
ii, ttti, seg0[ii, ttti, 0], seg0[ii, ttti, 1], seg0[ii, ttti, 2],
seg0[ii, ttti, 3], seg0[ii, ttti, 4], seg0[ii, ttti, 5],
seg0[ii, ttti, 6], seg0[ii, ttti, 7], seg0[ii, ttti, 8], seg0[ii, ttti,9],
a_seq[ii,min(ttti,seg0.shape[1]-2),0], a_seq[ii,min(ttti,seg0.shape[1]-2),1]
))
raise NotImplementError
if i==2:
if ti==32:
print(safe_idx[max_idx], score_safe[safe_idx[max_idx]], )
print("Choose", safe_idx[max_idx], max_idx)
for ttti in range(plan_t):
ss=seg0[safe_idx[max_idx],ttti]
print("i=%02d t=%02d x:%.2f y:%.2f th:%.2f | %.2f %.2f %.2f | x=%.2f y=%.2f r=%.2f T=%.2f | %.2f %.2f"%(
i, ttti, ss[0], ss[1], ss[2], ss[3],
ss[4], ss[5], ss[6], ss[7],
ss[8], ss[9],
a_seq[safe_idx[max_idx],min(ttti,args.nt-1),0], a_seq[safe_idx[max_idx],min(ttti,args.nt-1),1]
))
print(torch.norm(seg0[safe_idx[max_idx], :, :2]-seg0[safe_idx[max_idx], :, 6:8], dim=-1))
print(seg0[safe_idx[max_idx], 0:1, 8])
print(seg0[safe_idx[max_idx], :, 1])
seg_out = dynamics(x.cpu(), u_real.cpu(), include_first=True)
# evaluation
debug_dt = time.time() - t1_debug
seg_total = seg_out.clone()
acc = (stl(seg_total, args.smoothing_factor, d={"hard":True})[:, :1]>=0).float()
acc_avg = torch.mean(acc).item()
acc_list[ti,:] = acc[:,0]
safety = 1 - np.mean(np.any(crash, axis=0), axis=0)
intime = 1 - np.mean(np.any(timeout, axis=0), axis=0)
metrics["t"].append(debug_dt)
metrics["safety"].append(safety)
metrics["intime"].append(intime)
metrics["acc"].append(acc_avg)
history.append(x.clone())
seg_list.append(seg_out.detach().cpu())
for i in range(n_trials):
x[i] = seg_out[i, 1].detach().cpu()
prev_x_input = x_input.clone()
u_prev = u_real.clone()
print("%03d Acc:%.2f Safe:%.2f InTime:%.2f"%(ti, acc_avg, safety, intime))
history = torch.stack(history, dim=1)
seg_list = torch.stack(seg_list, dim=1)
print("ACC:%.3f SAFE:%.3f Trajlen:%.3f InTime:%.3f"%(
np.mean(np.array(metrics["acc"])), metrics["safety"][-1],
np.mean(np.sum(np.cumsum(crash, axis=0)<=0, axis=0), axis=0),
metrics["intime"][-1]))
# visualizations
if args.no_viz:
return
# visualization
bloat = 1.0
ratio = 0.6 # make space for ship
ship_ratio = 1 - ratio
extend_x = 10
r = np.sqrt(2)/2
bk = np.sqrt(1 - r**2)
poly_ship = np.array([
[1, 0],
[0, r],
[-bk, r],
[-bk, -r],
[0, -r]
])
poly_ship = poly_ship * ship_ratio
fs_list=[]
for ti in range(nt):
if ti % args.sim_freq == 0 or ti == nt - 1:
print("Viz", ti) #, 1-np.mean(collide[ti]), 1-np.mean(real_collide[ti]))
ax = plt.gca()
for obs_i in range(n_obs):
ax.add_patch(
Ellipse([obs_map[obs_i, 0], obs_map[obs_i, 1]], obs_map[obs_i, 2] * 2 * ratio, obs_map[obs_i, 2] * 2 * ratio,
label="obstacle" if obs_i==0 else None, color="gray", alpha=0.8))
i_cnt = 0
for i in range(n_trials):
i_cnt+=1
s = to_np(history[i, ti])
poly_ship_t = np.array(poly_ship)
poly_ship_t[:, 0] = poly_ship[:, 0] * np.cos(s[2]) - poly_ship[:, 1] * np.sin(s[2])
poly_ship_t[:, 1] = poly_ship[:, 0] * np.sin(s[2]) + poly_ship[:, 1] * np.cos(s[2])
poly_ship_t[:, 0] += s[0]
poly_ship_t[:, 1] += s[1]
ax.add_patch(Polygon(poly_ship_t, label="ego ship" if i_cnt==1 else None, color="blue", alpha=0.8))
plt.plot(history[i, :ti+1, 0], history[i, :ti+1, 1],
color="lightsalmon", label="past-traj" if i_cnt==1 else None, linewidth=2, alpha=1.0)