-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsig_model.py
executable file
·814 lines (670 loc) · 42.9 KB
/
sig_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
from __future__ import division
import os
import time
import math
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from sig_nets import *
from utils import *
#TODO randomness
import random
class SIGNetModel(object):
def __init__(self, opt, tgt_image, src_image_stack, intrinsics,
tgt_sem_tuple=[None,None,None,None], src_sem_stack_tuple=[None,None,None,None],
tgt_ins_tuple=[None,None,None,None], src_ins_stack_tuple=[None,None,None,None]):
self.opt = opt
#TODO random
seed = 8964
tf.set_random_seed(seed)
np.random.seed(seed)
random.seed(seed)
self.tgt_image = self.preprocess_image(tgt_image)
self.src_image_stack = self.preprocess_image(src_image_stack)
self.intrinsics = intrinsics
#TODO add semantics feed-in
tgt_sem, tgt_sem_map, tgt_sem_mask, tgt_sem_edge = tgt_sem_tuple
src_sem_stack, src_sem_map_stack, src_sem_mask_stack, src_sem_edge_stack = src_sem_stack_tuple
self.tgt_sem_map = self.preprocess_sem(tgt_sem_map, opt.sem_num_class-1, True)
self.src_sem_map_stack = self.preprocess_sem(src_sem_map_stack, opt.sem_num_class-1, True)
self.tgt_sem = self.preprocess_sem(tgt_sem)
self.src_sem_stack = self.preprocess_sem(src_sem_stack)
self.tgt_sem_mask = self.preprocess_sem(tgt_sem_mask)
self.src_sem_mask_stack = self.preprocess_sem(src_sem_mask_stack)
self.tgt_sem_edge = self.preprocess_sem(tgt_sem_edge)
self.src_sem_edge_stack = self.preprocess_sem(src_sem_edge_stack)
#TODO add instance feed-in (preproc)
tgt_ins0, tgt_ins0_map, tgt_ins0_edge, tgt_ins1_edge = tgt_ins_tuple
src_ins0_stack, src_ins0_map_stack, src_ins0_edge_stack, src_ins1_edge_stack = src_ins_stack_tuple
self.tgt_ins0_map = self.preprocess_sem(tgt_ins0_map, opt.ins_num_class-1, True)
self.src_ins0_map_stack = self.preprocess_sem(src_ins0_map_stack, opt.ins_num_class-1, True)
self.tgt_ins0 = self.preprocess_sem(tgt_ins0)
self.src_ins0_stack = self.preprocess_sem(src_ins0_stack)
self.tgt_ins0_edge = self.preprocess_sem(tgt_ins0_edge)
self.src_ins0_edge_stack = self.preprocess_sem(src_ins0_edge_stack)
self.tgt_ins1_edge = self.preprocess_sem(tgt_ins1_edge)
self.src_ins1_edge_stack = self.preprocess_sem(src_ins1_edge_stack)
self.build_model()
if not opt.mode in ['train_rigid', 'train_flow']:
return
self.build_losses()
def build_model(self):
opt = self.opt
self.tgt_image_pyramid = self.scale_pyramid(self.tgt_image, opt.num_scales)
self.tgt_image_tile_pyramid = [tf.tile(img, [opt.num_source, 1, 1, 1]) \
for img in self.tgt_image_pyramid]
# src images concated along batch dimension
if self.src_image_stack != None:
self.src_image_concat = tf.concat([self.src_image_stack[:,:,:,3*i:3*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_image_concat_pyramid = self.scale_pyramid(self.src_image_concat, opt.num_scales)
#TODO build pyramids for semantic segmentations
if opt.sem_as_loss:
K=opt.sem_num_class
self.tgt_sem_pyramid = self.sem_scale_pyramid(self.tgt_sem, opt.num_scales)
self.tgt_sem_tile_pyramid = [tf.tile(img, [opt.num_source, 1, 1, 1]) \
for img in self.tgt_sem_pyramid]
if opt.sem_mask_explore:
self.tgt_sem_mask_pyramid = self.sem_scale_pyramid(self.tgt_sem_mask, opt.num_scales)
self.tgt_sem_mask_tile_pyramid = [tf.tile(img, [opt.num_source, 1, 1, 1]) \
for img in self.tgt_sem_mask_pyramid]
if opt.sem_edge_explore:
self.tgt_sem_edge_pyramid = self.sem_scale_pyramid(self.tgt_sem_edge, opt.num_scales)
# src sem concated along batch dimension
if self.src_sem_stack != None:
self.src_sem_concat = tf.concat([self.src_sem_stack[:,:,:,K*i:K*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_sem_concat_pyramid = self.sem_scale_pyramid(self.src_sem_concat, opt.num_scales)
if opt.sem_mask_explore:
self.src_sem_mask_concat = tf.concat([self.src_sem_mask_stack[:,:,:,1*i:1*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_sem_mask_concat_pyramid = self.sem_scale_pyramid(self.src_sem_mask_concat, opt.num_scales)
if opt.sem_edge_explore:
self.src_sem_edge_concat = tf.concat([self.src_sem_edge_stack[:,:,:,1*i:1*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_sem_edge_concat_pyramid = self.sem_scale_pyramid(self.src_sem_edge_concat, opt.num_scales)
#TODO build pyramids for instance segmentations
if opt.ins_as_loss:
K=opt.ins_num_class
self.tgt_ins0_pyramid = self.sem_scale_pyramid(self.tgt_ins0, opt.num_scales)
self.tgt_ins0_map_pyramid=self.sem_scale_pyramid(self.tgt_ins0_map, opt.num_scales, True)
if opt.ins1_edge_explore:
self.tgt_ins1_edge_pyramid = self.sem_scale_pyramid(self.tgt_ins1_edge, opt.num_scales)
for i,img in enumerate(self.tgt_ins1_edge_pyramid):
tf.summary.image("aprior_tgt_ins1_edge_pyramid" + str(i), self.tgt_ins1_edge_pyramid[i], max_outputs=opt.max_outputs)
if self.src_ins0_stack!=None:
self.src_ins0_concat = tf.concat([self.src_ins0_stack[:,:,:,K*i:K*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_ins0_concat_pyramid = self.sem_scale_pyramid(self.src_ins0_concat, opt.num_scales)
self.src_ins0_map_concat = tf.concat([self.src_ins0_map_stack[:,:,:,1*i:1*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_ins0_map_concat_pyramid = self.sem_scale_pyramid(self.src_ins0_map_concat, opt.num_scales, True)
if opt.ins1_edge_explore:
self.src_ins1_edge_concat = tf.concat([self.src_ins1_edge_stack[:,:,:,1*i:1*(i+1)] \
for i in range(opt.num_source)], axis=0)
self.src_ins1_edge_concat_pyramid = self.sem_scale_pyramid(self.src_ins1_edge_concat, opt.num_scales)
for i,img in enumerate(self.src_ins1_edge_concat_pyramid):
tf.summary.image("aprior_src_ins1_edge_concat_pyramid" + str(i), self.src_ins1_edge_concat_pyramid[i], max_outputs=opt.max_outputs)
if opt.add_dispnet:
self.build_dispnet()
if opt.add_posenet:
self.build_posenet()
if opt.add_dispnet and opt.add_posenet:
self.build_rigid_flow_warping()
if opt.sem_assist and opt.add_segnet:
self.build_segnet()
if opt.add_flownet:
self.build_flownet()
if opt.mode == 'train_flow':
self.build_full_flow_warping()
if opt.flow_consistency_weight > 0:
self.build_flow_consistency()
def build_dispnet(self):
opt = self.opt
# build dispnet_inputs
if opt.mode == 'test_depth':
# for test_depth mode we only predict the depth of the target image
self.dispnet_inputs = self.tgt_image
else:
# multiple depth predictions; tgt: disp[:bs,:,:,:] src.i: disp[bs*(i+1):bs*(i+2),:,:,:]
self.dispnet_inputs = self.tgt_image
for i in range(opt.num_source):
self.dispnet_inputs = tf.concat([self.dispnet_inputs, self.src_image_stack[:,:,:,3*i:3*(i+1)]], axis=0)
dispnet_inputs_extras=[]
# augment in channel dim with semantic information
if opt.sem_as_feat:
if opt.one_hot_sem_feat:
k=opt.sem_num_class
dispnet_inputs_sem = self.tgt_sem
if opt.mode != 'test_depth':
for i in range(opt.num_source):
dispnet_inputs_sem = tf.concat([dispnet_inputs_sem, self.src_sem_stack[:,:,:,k*i:k*(i+1)]], axis=0)
else:
if opt.sem_mask_feature:
dispnet_inputs_sem = self.tgt_sem_mask
if opt.mode != 'test_depth':
for i in range(opt.num_source):
dispnet_inputs_sem = tf.concat([dispnet_inputs_sem, self.src_sem_mask_stack[:,:,:,i:(i+1)]], axis=0)
elif opt.sem_edge_feature:
dispnet_inputs_sem = self.tgt_sem_edge
if opt.mode != 'test_depth':
for i in range(opt.num_source):
dispnet_inputs_sem = tf.concat([dispnet_inputs_sem, self.src_sem_edge_stack[:,:,:,i:(i+1)]], axis=0)
else:
dispnet_inputs_sem = self.tgt_sem_map
if opt.mode != 'test_depth':
for i in range(opt.num_source):
dispnet_inputs_sem = tf.concat([dispnet_inputs_sem, self.src_sem_map_stack[:,:,:,i:(i+1)]], axis=0)
dispnet_inputs_extras.append(dispnet_inputs_sem)
if opt.ins_as_feat:
if opt.ins0_onehot_feature:
k=opt.ins_num_class
dispnet_inputs_ins0 = self.tgt_ins0
if opt.mode != "test_depth":
for i in range(opt.num_source):
dispnet_inputs_ins0 = tf.concat([dispnet_inputs_ins0, self.src_ins0_stack[:,:,:,k*i:k*(i+1)]], axis=0)
dispnet_inputs_extras.append(dispnet_inputs_ins0)
if opt.ins0_dense_feature:
dispnet_inputs_ins0_map = self.tgt_ins0_map
if opt.mode != "test_depth":
for i in range(opt.num_source):
dispnet_inputs_ins0_map = tf.concat([dispnet_inputs_ins0_map, self.src_ins0_map_stack[:,:,:,i:(i+1)]], axis=0)
dispnet_inputs_extras.append(dispnet_inputs_ins0_map)
if opt.ins0_edge_feature:
dispnet_inputs_ins0_edge = self.tgt_ins0_edge
if opt.mode != "test_depth":
for i in range(opt.num_source):
dispnet_inputs_ins0_edge = tf.concat([dispnet_inputs_ins0_edge, self.src_ins0_edge_stack[:,:,:,i:(i+1)]], axis=0)
dispnet_inputs_extras.append(dispnet_inputs_ins0_edge)
if opt.ins1_edge_feature:
dispnet_inputs_ins1_edge = self.tgt_ins1_edge
if opt.mode != "test_depth":
for i in range(opt.num_source):
dispnet_inputs_ins1_edge = tf.concat([dispnet_inputs_ins1_edge, self.src_ins1_edge_stack[:,:,:,i:(i+1)]], axis=0)
dispnet_inputs_extras.append(dispnet_inputs_ins1_edge)
self.dispnet_inputs_extra=None
if len(dispnet_inputs_extras)>0:
self.dispnet_inputs_extra = tf.concat(dispnet_inputs_extras, axis=3)
#TODO not blocked (no new network) and having extra; concat image and sem
if opt.block_dispnet_sem==False and self.dispnet_inputs_extra!=None:
self.dispnet_inputs = tf.concat([self.dispnet_inputs, self.dispnet_inputs_extra], axis=3)
if opt.block_dispnet_sem and opt.new_sem_dispnet and self.dispnet_inputs_extra!=None:
self.pred_disp = disp_net(opt, self.dispnet_inputs, False) + disp_net(opt, self.dispnet_inputs_extra, True)
else:
self.pred_disp = disp_net(opt, self.dispnet_inputs, False)
if opt.scale_normalize:
# As proposed in https://arxiv.org/abs/1712.00175, this can
# bring improvement in depth estimation, but not included in our paper.
self.pred_disp = [self.spatial_normalize(disp) for disp in self.pred_disp]
self.pred_depth = [1./d for d in self.pred_disp]
#TODO Add multi-scale depth maps to TF summary.
for i in range(len(self.pred_depth)):
tf.summary.image('pred_depth_' + str(i), self.pred_depth[i], max_outputs=opt.max_outputs)
def build_posenet(self):
opt = self.opt
# build posenet_inputs
self.posenet_inputs = tf.concat([self.tgt_image, self.src_image_stack], axis=3)
posenet_inputs_extras=[]
#TODO adding semantic as input
if opt.sem_as_feat:
if opt.one_hot_sem_feat:
posenet_inputs_sem = tf.concat([self.tgt_sem, self.src_sem_stack], axis=3) #TODO problem!!! dimension cat upon?
else:
if opt.sem_mask_feature:
posenet_inputs_sem = tf.concat([self.tgt_sem_mask, self.src_sem_mask_stack], axis=3)
elif opt.sem_edge_feature:
posenet_inputs_sem = tf.concat([self.tgt_sem_edge, self.src_sem_edge_stack], axis=3)
else:
posenet_inputs_sem = tf.concat([self.tgt_sem_map, self.src_sem_map_stack], axis=3)
posenet_inputs_extras.append(posenet_inputs_sem)
#TODO adding instance as input
if opt.ins_as_feat:
if opt.ins0_onehot_feature:
posenet_inputs_extras.append(tf.concat([self.tgt_ins0, self.src_ins0_stack], axis=3))
if opt.ins0_dense_feature:
posenet_inputs_extras.append(tf.concat([self.tgt_ins0_map, self.src_ins0_map_stack], axis=3))
if opt.ins0_edge_feature:
posenet_inputs_extras.append(tf.concat([self.tgt_ins0_edge, self.src_ins0_edge_stack], axis=3))
if opt.ins1_edge_feature:
posenet_inputs_extras.append(tf.concat([self.tgt_ins1_edge, self.src_ins1_edge_stack], axis=3))
self.posenet_inputs_extra=None
if len(posenet_inputs_extras)>0:
self.posenet_inputs_extra = tf.concat(posenet_inputs_extras, axis=3)
#TODO not blocked(no new network) and having extra; concat image and sem
if opt.block_posenet_sem==False and self.posenet_inputs_extra!=None:
self.posenet_inputs = tf.concat([self.posenet_inputs, self.posenet_inputs_extra], axis=3)
if opt.block_posenet_sem and opt.new_sem_posenet and self.posenet_inputs_extra!=None:
self.pred_poses = pose_net(opt, self.posenet_inputs, False) + pose_net(opt, self.posenet_inputs_extra, True)
else:
self.pred_poses = pose_net(opt, self.posenet_inputs, False)
#TODO build the simple transfer network for semantic segmentation
def build_segnet(self):
opt = self.opt
# build segnet_inputs
if opt.mode == 'test_depth':
self.segnet_inputs = self.tgt_image
else:
self.segnet_inputs = self.tgt_image
for i in range(opt.num_source):
self.segnet_inputs = tf.concat([self.segnet_inputs, self.src_image_stack[:,:,:,3*i:3*(i+1)]], axis=0)
# concatenate disp prediction N*W*C*4 (4=3+1)
# N=batch_size*(num_source+1)
self.segnet_inputs = tf.concat([self.segnet_inputs, self.pred_disp[0]], axis=3)
# build segnet N*W*C*(channel_seg)
# N=batch_size*(num_source+1)
# channel_seg=19, 81, 19+81, 19+81+1...
self.pred_seg = seg_net(opt, self.segnet_inputs)
#TODO Add to TF summary.
for i in range(len(self.pred_seg)):
for k in range(self.pred_seg[i].shape[3]):
tf.summary.image('pred_seg_%d_%d'%(i,k), self.pred_seg[i][:,:,:,k:k+1], max_outputs=opt.max_outputs)
def build_rigid_flow_warping(self):
opt = self.opt
bs = opt.batch_size
# build rigid flow (fwd: tgt->src, bwd: src->tgt)
self.fwd_rigid_flow_pyramid = []
self.bwd_rigid_flow_pyramid = []
for s in range(opt.num_scales):
for i in range(opt.num_source):
fwd_rigid_flow = compute_rigid_flow(tf.squeeze(self.pred_depth[s][:bs], axis=3),
self.pred_poses[:,i,:], self.intrinsics[:,s,:,:], False)
bwd_rigid_flow = compute_rigid_flow(tf.squeeze(self.pred_depth[s][bs*(i+1):bs*(i+2)], axis=3),
self.pred_poses[:,i,:], self.intrinsics[:,s,:,:], True)
if not i:
fwd_rigid_flow_concat = fwd_rigid_flow
bwd_rigid_flow_concat = bwd_rigid_flow
else:
fwd_rigid_flow_concat = tf.concat([fwd_rigid_flow_concat, fwd_rigid_flow], axis=0)
bwd_rigid_flow_concat = tf.concat([bwd_rigid_flow_concat, bwd_rigid_flow], axis=0)
self.fwd_rigid_flow_pyramid.append(fwd_rigid_flow_concat)
self.bwd_rigid_flow_pyramid.append(bwd_rigid_flow_concat)
# warping by rigid flow
self.fwd_rigid_warp_pyramid = [flow_warp(self.src_image_concat_pyramid[s], self.fwd_rigid_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_rigid_warp_pyramid = [flow_warp(self.tgt_image_tile_pyramid[s], self.bwd_rigid_flow_pyramid[s]) \
for s in range(opt.num_scales)]
#TODO Record forward rigid flow warping result on tensorboard
for i in range(len(self.fwd_rigid_warp_pyramid)):
tf.summary.image("fwd_rigid_warp_scale" + str(i), self.fwd_rigid_warp_pyramid[i], max_outputs=opt.max_outputs)
#TODO Record backward rigid flow warping result on tensorboard
for i in range(len(self.bwd_rigid_warp_pyramid)):
tf.summary.image("bwd_rigid_warp_scale" + str(i), self.bwd_rigid_warp_pyramid[i], max_outputs=opt.max_outputs)
# compute reconstruction error
self.fwd_rigid_error_pyramid = [self.image_similarity(self.fwd_rigid_warp_pyramid[s], self.tgt_image_tile_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_rigid_error_pyramid = [self.image_similarity(self.bwd_rigid_warp_pyramid[s], self.src_image_concat_pyramid[s]) \
for s in range(opt.num_scales)]
#TODO Record fwd rigid flow warp error on tensorboard
self.fwd_rigid_error_scale=[]
self.bwd_rigid_error_scale=[]
for i in range(len(self.fwd_rigid_error_pyramid)):
tmp_fwd_rigid_error_scale=tf.reduce_mean(self.fwd_rigid_error_pyramid[i],axis=3,keepdims=True)
tf.summary.image("fwd_rigid_error_scale" + str(i), tmp_fwd_rigid_error_scale, max_outputs=opt.max_outputs)
self.fwd_rigid_error_scale.append(tmp_fwd_rigid_error_scale)
#TODO Record bwd rigid flow warp error on tensorboard
for i in range(len(self.bwd_rigid_error_pyramid)):
tmp_bwd_rigid_error_scale=tf.reduce_mean(self.bwd_rigid_error_pyramid[i],axis=3,keepdims=True)
tf.summary.image("bwd_rigid_error_scale" + str(i), tmp_bwd_rigid_error_scale, max_outputs=opt.max_outputs)
self.bwd_rigid_error_scale.append(tmp_bwd_rigid_error_scale)
#TODO build rigid flow for semantic segmentations (similar to images)
if opt.sem_as_loss:
# semantic warping by rigid flow
if opt.sem_warp_explore:
self.fwd_sem_rigid_warp_pyramid = [sem_flow_warp(self.src_sem_concat_pyramid[s], self.fwd_rigid_flow_pyramid[s], opt.sem_nn_warp) \
for s in range(opt.num_scales)]
self.bwd_sem_rigid_warp_pyramid = [sem_flow_warp(self.tgt_sem_tile_pyramid[s], self.bwd_rigid_flow_pyramid[s], opt.sem_nn_warp) \
for s in range(opt.num_scales)]
# compute sem warp reconstruction error
self.fwd_sem_rigid_warp_error_pyramid = [self.cal_sem_warp_error(self.fwd_sem_rigid_warp_pyramid[s], self.tgt_sem_tile_pyramid[s], s) \
for s in range(opt.num_scales)]
self.bwd_sem_rigid_warp_error_pyramid = [self.cal_sem_warp_error(self.bwd_sem_rigid_warp_pyramid[s], self.src_sem_concat_pyramid[s], s) \
for s in range(opt.num_scales)]
#TODO Record fwd rigid flow warp error on tensorboard
for i in range(len(self.fwd_sem_rigid_warp_error_pyramid)):
tf.summary.image("fwd_sem_rigid_error_scale" + str(i), tf.reduce_mean(self.fwd_sem_rigid_warp_error_pyramid[i],axis=3,keepdims=True), max_outputs=opt.max_outputs)
#TODO Record bwd rigid flow warp error on tensorboard
for i in range(len(self.bwd_sem_rigid_warp_error_pyramid)):
tf.summary.image("bwd_sem_rigid_error_scale" + str(i), tf.reduce_mean(self.bwd_sem_rigid_warp_error_pyramid[i],axis=3,keepdims=True), max_outputs=opt.max_outputs)
#TODO Use sem mask to find error on **warped images**
if opt.sem_mask_explore:
self.fwd_sem_mask_error_pyramid = [self.image_similarity(self.fwd_rigid_warp_pyramid[s], self.tgt_image_tile_pyramid[s], self.tgt_sem_mask_tile_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_sem_mask_error_pyramid = [self.image_similarity(self.bwd_rigid_warp_pyramid[s], self.src_image_concat_pyramid[s], self.src_sem_mask_concat_pyramid[s]) \
for s in range(opt.num_scales)]
self.fwd_sem_mask_error_scale=[]
self.bwd_sem_mask_error_scale=[]
#TODO Record fwd rigid flow warp error on tensorboard
for i in range(len(self.fwd_sem_mask_error_pyramid)):
tmp_fwd_sem_mask_error_scale=tf.reduce_mean(self.fwd_sem_mask_error_pyramid[i],axis=3,keepdims=True)
tf.summary.image("fwd_sem_mask_error_scale" + str(i), tmp_fwd_sem_mask_error_scale, max_outputs=opt.max_outputs)
self.fwd_sem_mask_error_scale.append(tmp_fwd_sem_mask_error_scale)
#TODO Record bwd rigid flow warp error on tensorboard
for i in range(len(self.bwd_sem_mask_error_pyramid)):
tmp_bwd_sem_mask_error_scale=tf.reduce_mean(self.bwd_sem_mask_error_pyramid[i],axis=3,keepdims=True)
tf.summary.image("bwd_sem_mask_error_scale" + str(i), tmp_bwd_sem_mask_error_scale, max_outputs=opt.max_outputs)
self.bwd_sem_mask_error_scale.append(tmp_bwd_sem_mask_error_scale)
def build_flownet(self):
opt = self.opt
# build flownet_inputs
self.fwd_flownet_inputs = tf.concat([self.tgt_image_tile_pyramid[0], self.src_image_concat_pyramid[0]], axis=3)
self.bwd_flownet_inputs = tf.concat([self.src_image_concat_pyramid[0], self.tgt_image_tile_pyramid[0]], axis=3)
if opt.flownet_type == 'residual':
self.fwd_flownet_inputs = tf.concat([self.fwd_flownet_inputs,
self.fwd_rigid_warp_pyramid[0],
self.fwd_rigid_flow_pyramid[0],
self.L2_norm(self.fwd_rigid_error_pyramid[0])], axis=3)
self.bwd_flownet_inputs = tf.concat([self.bwd_flownet_inputs,
self.bwd_rigid_warp_pyramid[0],
self.bwd_rigid_flow_pyramid[0],
self.L2_norm(self.bwd_rigid_error_pyramid[0])], axis=3)
self.flownet_inputs = tf.concat([self.fwd_flownet_inputs, self.bwd_flownet_inputs], axis=0)
# build flownet
self.pred_flow = flow_net(opt, self.flownet_inputs)
# unnormalize pyramid flow back into pixel metric
for s in range(opt.num_scales):
curr_bs, curr_h, curr_w, _ = self.pred_flow[s].get_shape().as_list()
scale_factor = tf.cast(tf.constant([curr_w, curr_h], shape=[1,1,1,2]), 'float32')
scale_factor = tf.tile(scale_factor, [curr_bs, curr_h, curr_w, 1])
self.pred_flow[s] = self.pred_flow[s] * scale_factor
# split forward/backward flows
self.fwd_full_flow_pyramid = [self.pred_flow[s][:opt.batch_size*opt.num_source] for s in range(opt.num_scales)]
self.bwd_full_flow_pyramid = [self.pred_flow[s][opt.batch_size*opt.num_source:] for s in range(opt.num_scales)]
# residual flow postprocessing
if opt.flownet_type == 'residual':
self.fwd_full_flow_pyramid = [self.fwd_full_flow_pyramid[s] + self.fwd_rigid_flow_pyramid[s] for s in range(opt.num_scales)]
self.bwd_full_flow_pyramid = [self.bwd_full_flow_pyramid[s] + self.bwd_rigid_flow_pyramid[s] for s in range(opt.num_scales)]
def build_full_flow_warping(self):
opt = self.opt
# warping by full flow
self.fwd_full_warp_pyramid = [flow_warp(self.src_image_concat_pyramid[s], self.fwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_full_warp_pyramid = [flow_warp(self.tgt_image_tile_pyramid[s], self.bwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
# compute reconstruction error
self.fwd_full_error_pyramid = [self.image_similarity(self.fwd_full_warp_pyramid[s], self.tgt_image_tile_pyramid[s]) \
for s in range(opt.num_scales)]
self.bwd_full_error_pyramid = [self.image_similarity(self.bwd_full_warp_pyramid[s], self.src_image_concat_pyramid[s]) \
for s in range(opt.num_scales)]
def build_flow_consistency(self):
opt = self.opt
# warp pyramid full flow
self.bwd2fwd_flow_pyramid = [flow_warp(self.bwd_full_flow_pyramid[s], self.fwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
self.fwd2bwd_flow_pyramid = [flow_warp(self.fwd_full_flow_pyramid[s], self.bwd_full_flow_pyramid[s]) \
for s in range(opt.num_scales)]
# calculate flow consistency
self.fwd_flow_diff_pyramid = [tf.abs(self.bwd2fwd_flow_pyramid[s] + self.fwd_full_flow_pyramid[s]) for s in range(opt.num_scales)]
self.bwd_flow_diff_pyramid = [tf.abs(self.fwd2bwd_flow_pyramid[s] + self.bwd_full_flow_pyramid[s]) for s in range(opt.num_scales)]
# build flow consistency condition
self.fwd_consist_bound = [opt.flow_consistency_beta * self.L2_norm(self.fwd_full_flow_pyramid[s]) * 2**s for s in range(opt.num_scales)]
self.bwd_consist_bound = [opt.flow_consistency_beta * self.L2_norm(self.bwd_full_flow_pyramid[s]) * 2**s for s in range(opt.num_scales)]
self.fwd_consist_bound = [tf.stop_gradient(tf.maximum(v, opt.flow_consistency_alpha)) for v in self.fwd_consist_bound]
self.bwd_consist_bound = [tf.stop_gradient(tf.maximum(v, opt.flow_consistency_alpha)) for v in self.bwd_consist_bound]
# build flow consistency mask
self.noc_masks_src = [tf.cast(tf.less(self.L2_norm(self.bwd_flow_diff_pyramid[s]) * 2**s,
self.bwd_consist_bound[s]), tf.float32) for s in range(opt.num_scales)]
self.noc_masks_tgt = [tf.cast(tf.less(self.L2_norm(self.fwd_flow_diff_pyramid[s]) * 2**s,
self.fwd_consist_bound[s]), tf.float32) for s in range(opt.num_scales)]
def build_losses(self):
opt = self.opt
bs = opt.batch_size
rigid_warp_loss = 0.0
disp_smooth_loss = 0.0
#TODO sem loss
sem_warp_loss=0.0
sem_mask_loss=0.0
sem_edge_loss=0.0
#TODO sem guidance loss
sem_seg_loss=0.0
ins0_seg_loss=0.0
ins1_edge_seg_loss=0.0
flow_warp_loss = 0.0
flow_smooth_loss = 0.0
flow_consistency_loss = 0.0
for s in range(opt.num_scales):
# rigid_warp_loss
if opt.mode == 'train_rigid' and opt.rigid_warp_weight > 0:
rigid_warp_loss += opt.rigid_warp_weight*opt.num_source/2 * \
(tf.reduce_mean(self.fwd_rigid_error_pyramid[s]) + \
tf.reduce_mean(self.bwd_rigid_error_pyramid[s]))
#TODO sem_as_loss
if opt.mode == 'train_rigid' and opt.sem_as_loss:
if opt.sem_warp_explore:
sem_warp_loss += opt.sem_warp_weight * opt.num_source/2 * \
(tf.reduce_mean(self.fwd_sem_rigid_warp_error_pyramid[s]) + tf.reduce_mean(self.bwd_sem_rigid_warp_error_pyramid[s]))
if opt.sem_mask_explore:
sem_mask_loss += opt.sem_mask_weight * opt.num_source/2 * \
(tf.reduce_mean(self.fwd_sem_mask_error_pyramid[s]) + \
tf.reduce_mean(self.bwd_sem_mask_error_pyramid[s]))
if opt.sem_edge_explore:
sem_edge_loss += opt.sem_edge_weight /(2**s) * self.compute_sem_edge_smooth_loss(self.pred_disp[s],
tf.concat([self.tgt_sem_edge_pyramid[s], self.src_sem_edge_concat_pyramid[s]], axis=0))
# disp_smooth_loss
if opt.mode == 'train_rigid' and opt.disp_smooth_weight > 0:
disp_smooth_loss += opt.disp_smooth_weight/(2**s) * self.compute_smooth_loss(self.pred_disp[s],
tf.concat([self.tgt_image_pyramid[s], self.src_image_concat_pyramid[s]], axis=0))
# flow_warp_loss
if opt.mode == 'train_flow' and opt.flow_warp_weight > 0:
if opt.flow_consistency_weight == 0:
flow_warp_loss += opt.flow_warp_weight*opt.num_source/2 * \
(tf.reduce_mean(self.fwd_full_error_pyramid[s]) + tf.reduce_mean(self.bwd_full_error_pyramid[s]))
else:
flow_warp_loss += opt.flow_warp_weight*opt.num_source/2 * \
(tf.reduce_sum(tf.reduce_mean(self.fwd_full_error_pyramid[s], axis=3, keepdims=True) * \
self.noc_masks_tgt[s]) / tf.reduce_sum(self.noc_masks_tgt[s]) + \
tf.reduce_sum(tf.reduce_mean(self.bwd_full_error_pyramid[s], axis=3, keepdims=True) * \
self.noc_masks_src[s]) / tf.reduce_sum(self.noc_masks_src[s]))
# flow_smooth_loss
if opt.mode == 'train_flow' and opt.flow_smooth_weight > 0:
flow_smooth_loss += opt.flow_smooth_weight/(2**(s+1)) * \
(self.compute_flow_smooth_loss(self.fwd_full_flow_pyramid[s], self.tgt_image_tile_pyramid[s]) +
self.compute_flow_smooth_loss(self.bwd_full_flow_pyramid[s], self.src_image_concat_pyramid[s]))
# flow_consistency_loss
if opt.mode == 'train_flow' and opt.flow_consistency_weight > 0:
flow_consistency_loss += opt.flow_consistency_weight/2 * \
(tf.reduce_sum(tf.reduce_mean(self.fwd_flow_diff_pyramid[s] , axis=3, keepdims=True) * \
self.noc_masks_tgt[s]) / tf.reduce_sum(self.noc_masks_tgt[s]) + \
tf.reduce_sum(tf.reduce_mean(self.bwd_flow_diff_pyramid[s] , axis=3, keepdims=True) * \
self.noc_masks_src[s]) / tf.reduce_sum(self.noc_masks_src[s]))
#TODO segmentation guidance loss(single-scale, cross-entropy)
# order shall be sem|ins0|ins1_edge, each of them can be omitted
# sem 0-18 (1 time)
# ins0 19-99, or 0-80 (2 times)
# ins1_edge 0-0, 81-81 or 100-100 (4 times)
if opt.mode=='train_rigid' and opt.sem_assist and opt.add_segnet:
n_sem=opt.sem_num_class
n_ins=opt.ins_num_class
if opt.transfer_learn_sem:
sem_seg_loss += opt.sem_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.compute_cross_entropy(self.tgt_sem_pyramid[s][0], self.pred_seg[s][0,:,:,:n_sem])+ \
self.compute_cross_entropy(self.src_sem_concat_pyramid[s][0], self.pred_seg[s][1,:,:,:n_sem])+ \
self.compute_cross_entropy(self.src_sem_concat_pyramid[s][1], self.pred_seg[s][2,:,:,:n_sem]))
if opt.transfer_learn_ins0:
ins0_seg_loss += opt.ins0_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.compute_cross_entropy(self.tgt_ins0_pyramid[s][0], self.pred_seg[s][0,:,:,n_sem:n_sem+n_ins])+ \
self.compute_cross_entropy(self.src_ins0_concat_pyramid[s][0], self.pred_seg[s][1,:,:,n_sem:n_sem+n_ins])+ \
self.compute_cross_entropy(self.src_ins0_concat_pyramid[s][1], self.pred_seg[s][2,:,:,n_sem:n_sem+n_ins]))
if opt.transfer_learn_ins1_edge:
ins1_edge_seg_loss += opt.ins1_edge_seg_weight/(2**(s+1)) *\
tf.reduce_mean(self.L2_norm(self.tgt_ins1_edge_pyramid[s][0]/2-self.pred_seg[s][0,:,:,n_sem+n_ins:n_sem+n_ins+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][0]/2-self.pred_seg[s][1,:,:,n_sem+n_ins:n_sem+n_ins+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][1]/2-self.pred_seg[s][2,:,:,n_sem+n_ins:n_sem+n_ins+1],None, False))
elif opt.transfer_learn_ins1_edge:
ins1_edge_seg_loss += opt.ins1_edge_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.L2_norm(self.tgt_ins1_edge_pyramid[s][0]/2-self.pred_seg[s][0,:,:,n_sem: n_sem+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][0]/2-self.pred_seg[s][1,:,:,n_sem: n_sem+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][1]/2-self.pred_seg[s][2,:,:,n_sem: n_sem+1],None, False))
else:
if opt.transfer_learn_ins0:
ins0_seg_loss += opt.ins0_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.compute_cross_entropy(self.tgt_ins0_pyramid[s][0], self.pred_seg[s][0,:,:,: n_ins])+ \
self.compute_cross_entropy(self.src_ins0_concat_pyramid[s][0], self.pred_seg[s][1,:,:,: n_ins])+ \
self.compute_cross_entropy(self.src_ins0_concat_pyramid[s][1], self.pred_seg[s][2,:,:,: n_ins]))
if opt.transfer_learn_ins1_edge:
ins1_edge_seg_loss += opt.ins1_edge_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.L2_norm(self.tgt_ins1_edge_pyramid[s][0]/2-self.pred_seg[s][0,:,:,n_ins: n_ins+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][0]/2-self.pred_seg[s][1,:,:,n_ins: n_ins+1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][1]/2-self.pred_seg[s][2,:,:,n_ins: n_ins+1],None, False))
elif opt.transfer_learn_ins1_edge:
ins1_edge_seg_loss += opt.ins1_edge_seg_weight/(2**(s+1)) * \
tf.reduce_mean(self.L2_norm(self.tgt_ins1_edge_pyramid[s][0]/2-self.pred_seg[s][0,:,:,: 1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][0]/2-self.pred_seg[s][1,:,:,: 1],None, False)+ \
self.L2_norm(self.src_ins1_edge_concat_pyramid[s][1]/2-self.pred_seg[s][2,:,:,: 1],None, False))
regularization_loss = tf.add_n(tf.losses.get_regularization_losses())
self.total_loss = 0.0
if opt.use_regularization:
self.total_loss += regularization_loss
self.img_loss = 0.0
self.rigid_warp_loss = 0.0
self.disp_smooth_loss = 0.0
if opt.sem_as_loss:
self.sem_loss = 0.0
if opt.sem_warp_explore:
self.sem_warp_loss=0.0
if opt.sem_mask_explore:
self.sem_mask_loss=0.0
if opt.sem_edge_explore:
self.sem_edge_loss=0.0
if opt.sem_assist and opt.add_segnet:
self.sem_seg_loss=0.0
self.ins0_seg_loss=0.0
self.ins1_edge_seg_loss=0.0
if opt.ins_as_loss:
self.ins_loss = 0.0
#TODO modified loss function
if opt.mode == 'train_rigid':
self.rigid_warp_loss += rigid_warp_loss
self.disp_smooth_loss += disp_smooth_loss
self.img_loss = rigid_warp_loss + disp_smooth_loss
self.total_loss += self.img_loss
#TODO our sem loss
if opt.sem_as_loss:
if opt.sem_warp_explore:
self.sem_warp_loss = sem_warp_loss
self.sem_loss += self.sem_warp_loss
if opt.sem_mask_explore:
self.sem_mask_loss = sem_mask_loss
self.sem_loss += self.sem_mask_loss
if opt.sem_edge_explore:
self.sem_edge_loss = sem_edge_loss
self.sem_loss += self.sem_edge_loss
self.total_loss += self.sem_loss
if opt.sem_assist and opt.add_segnet:
self.sem_seg_loss += sem_seg_loss
self.ins0_seg_loss += ins0_seg_loss
self.ins1_edge_seg_loss += ins1_edge_seg_loss
self.total_loss += self.sem_seg_loss + self.ins0_seg_loss + self.ins1_edge_seg_loss
if opt.mode == 'train_flow':
self.total_loss += flow_warp_loss + flow_smooth_loss + flow_consistency_loss
def SSIM(self, x, y):
C1 = 0.01 ** 2
C2 = 0.03 ** 2
mu_x = slim.avg_pool2d(x, 3, 1, 'SAME')
mu_y = slim.avg_pool2d(y, 3, 1, 'SAME')
sigma_x = slim.avg_pool2d(x ** 2, 3, 1, 'SAME') - mu_x ** 2
sigma_y = slim.avg_pool2d(y ** 2, 3, 1, 'SAME') - mu_y ** 2
sigma_xy = slim.avg_pool2d(x * y , 3, 1, 'SAME') - mu_x * mu_y
SSIM_n = (2 * mu_x * mu_y + C1) * (2 * sigma_xy + C2)
SSIM_d = (mu_x ** 2 + mu_y ** 2 + C1) * (sigma_x + sigma_y + C2)
SSIM = SSIM_n / SSIM_d
return tf.clip_by_value((1 - SSIM) / 2, 0, 1)
def image_similarity(self, x, y, mask=None):
#TODO here our mask has one channel, and img has 3 channels
if mask!=None:
x=x*tf.tile(mask,[1,1,1,3])
y=y*tf.tile(mask,[1,1,1,3])
return self.opt.alpha_recon_image * self.SSIM(x, y) + (1-self.opt.alpha_recon_image) * tf.abs(x-y)
def L2_norm(self, x, axis=3, keepdims=True):
curr_offset = 1e-10
l2_norm = tf.norm(tf.abs(x) + curr_offset, axis=axis, keepdims=keepdims)
return l2_norm
def compute_cross_entropy(self, labels, logits):
cross_ent = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=logits)
return cross_ent
def spatial_normalize(self, disp):
_, curr_h, curr_w, curr_c = disp.get_shape().as_list()
disp_mean = tf.reduce_mean(disp, axis=[1,2,3], keepdims=True)
disp_mean = tf.tile(disp_mean, [1, curr_h, curr_w, curr_c])
return disp/disp_mean
def scale_pyramid(self, img, num_scales):
if img == None:
return None
else:
scaled_imgs = [img]
_, h, w, _ = img.get_shape().as_list()
for i in range(num_scales - 1):
ratio = 2 ** (i + 1)
nh = int(h / ratio)
nw = int(w / ratio)
scaled_imgs.append(tf.image.resize_area(img, [nh, nw]))
return scaled_imgs
def sem_scale_pyramid(self, img, num_scales, nearest_neighbor=False):
if img == None:
return None
else:
scaled_imgs = [img]
_, h, w, _ = img.get_shape().as_list()
for i in range(num_scales - 1):
ratio = 2 ** (i + 1)
nh = int(h / ratio)
nw = int(w / ratio)
if nearest_neighbor:
scaled_imgs.append(tf.image.resize_nearest_neighbor(img, [nh, nw]))
else:
scaled_imgs.append(tf.image.resize_area(img, [nh, nw]))
return scaled_imgs
def gradient_x(self, img):
gx = img[:,:,:-1,:] - img[:,:,1:,:]
return gx
def gradient_y(self, img):
gy = img[:,:-1,:,:] - img[:,1:,:,:]
return gy
def compute_smooth_loss(self, disp, img):
disp_gradients_x = self.gradient_x(disp)
disp_gradients_y = self.gradient_y(disp)
image_gradients_x = self.gradient_x(img)
image_gradients_y = self.gradient_y(img)
weights_x = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_x), 3, keepdims=True))
weights_y = tf.exp(-tf.reduce_mean(tf.abs(image_gradients_y), 3, keepdims=True))
smoothness_x = disp_gradients_x * weights_x
smoothness_y = disp_gradients_y * weights_y
return tf.reduce_mean(tf.abs(smoothness_x)) + tf.reduce_mean(tf.abs(smoothness_y))
def compute_sem_edge_smooth_loss(self, disp, sem_edge_img):
disp_gradients_x = self.gradient_x(disp)
disp_gradients_y = self.gradient_y(disp)
image_gradients_x = (sem_edge_img[:,:,:-1,:] + sem_edge_img[:,:,1:,:])/2
image_gradients_y = (sem_edge_img[:,:-1,:,:] + sem_edge_img[:,1:,:,:])/2
weights_x = tf.exp(-1*tf.abs(image_gradients_x))
weights_y = tf.exp(-1*tf.abs(image_gradients_y))
smoothness_x = disp_gradients_x * weights_x
smoothness_y = disp_gradients_y * weights_y
return tf.reduce_mean(tf.abs(smoothness_x)) + tf.reduce_mean(tf.abs(smoothness_y))
def compute_flow_smooth_loss(self, flow, img):
smoothness = 0
for i in range(2):
smoothness += self.compute_smooth_loss(tf.expand_dims(flow[:,:,:,i], -1), img)
return smoothness/2
def cal_sem_warp_error(self, pred_img, gt_img, scale):
return self.L2_norm(pred_img-gt_img) * 2**scale
def preprocess_image(self, image):
# Assuming input image is uint8
if image == None:
return None
else:
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
return image * 2. -1.
#TODO preprocessing for semantic parts
def preprocess_sem(self, sem, max_value=1.0, normalize=False):
# Assuming input image is uint8
if sem == None:
return None
else:
sem= tf.cast(sem, dtype=tf.float32) / max_value
if normalize:
return sem * 2 - 1
else:
return sem
def deprocess_image(self, image):
# Assuming input image is float32
image = (image + 1.)/2.
return tf.image.convert_image_dtype(image, dtype=tf.uint8)