-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_depth_test_eval.sh
executable file
·97 lines (88 loc) · 3.14 KB
/
run_depth_test_eval.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# This shell script is for SIGNet depth evaluation and visualization
## COMMAND-LINE PARAMETERS
source $1
#MODEL_INDEX=$2
## DIR LOGIC
MODE=test_depth
DATASET_DIR=../../data/kitti_raw/
#INIT_CKPT_FILE=${CHECKPOINT_DIR}/model-${MODEL_INDEX}
INIT_CKPT_FILE=${CHECKPOINT_DIR}/model
BATCH_SIZE=1
DEPTH_TEST_SPLIT=eigen
OUTPUT_DIR=${INIT_CKPT_FILE}/output
KITTI_DIR=${DATASET_DIR}
#PRED_FILE=${OUTPUT_DIR}/model-${MODEL_INDEX}.npy
PRED_FILE=${OUTPUT_DIR}/model.npy
SPLIT=${DEPTH_TEST_SPLIT}
SEM_NUM_CLASS=19
## CUSTOMIZED PARAMETERS
SHOW_VIS=false # Whether to visualize result
VIS_DIR=./outputs/depth/$3/ # Path to save the visualize result
LIMIT=-1 # How many samples to save (-1 for unlimit)
INTERP=false # Interpolate for gt depth (To get paper's metrics, let INTERP=false)
MASK_EVAL=false
MASK_KITTI_DIR=../../data/test_files_eigen_semantic/ # Semantic segmentation for kitti test set
MASK_SUFFIX=".npy"
mkdir -p ${OUTPUT_DIR}
# RUNNING
# 1. Run the inference (test)
if [ "$#" -le 3 ];then
python3 sig_main.py \
--mode=${MODE} \
--dataset_dir=${DATASET_DIR} \
--init_ckpt_file=${INIT_CKPT_FILE} \
--batch_size=${BATCH_SIZE} \
--scale_normalize=${SCALE_NORMALIZE} \
--sem_assist=${SEM_ASSIST} \
--sem_as_feat=${SEM_AS_FEAT} \
--one_hot_sem_feat=${ONE_HOT_SEM_FEAT} \
--sem_test_kitti_dir=${MASK_KITTI_DIR} \
--sem_num_class=${SEM_NUM_CLASS} \
--depth_test_split=${DEPTH_TEST_SPLIT} \
--output_dir=${OUTPUT_DIR} \
\
--sem_mask_explore=${SEM_MASK_EXPLORE} \
--sem_mask_feature=${SEM_MASK_FEATURE} \
--sem_edge_explore=${SEM_EDGE_EXPLORE} \
--sem_edge_feature=${SEM_EDGE_FEATURE} \
\
--sem_mask_pattern=${SEM_MASK_PATTERN} \
\
--ins_assist=${INS_ASSIST} \
--ins_as_feat=${INS_AS_FEAT} \
--ins_as_loss=${INS_AS_LOSS} \
--ins0_dense_feature=${INS0_DENSE_FEATURE} \
--ins0_onehot_feature=${INS0_ONEHOT_FEATURE} \
--ins0_edge_explore=${INS0_EDGE_EXPLORE} \
--ins0_edge_feature=${INS0_EDGE_FEATURE} \
--ins1_dense_feature=${INS1_DENSE_FEATURE} \
--ins1_onehot_feature=${INS1_ONEHOT_FEATURE} \
--ins1_edge_explore=${INS1_EDGE_EXPLORE} \
--ins1_edge_feature=${INS1_EDGE_FEATURE} \
--ins_train_kitti_dir=${INS_TRAIN_KITTI_DIR} \
--ins_test_kitti_dir=${INS_TEST_KITTI_DIR} \
\
--block_dispnet_sem=${BLOCK_DISPNET_SEM} \
--block_posenet_sem=${BLOCK_POSENET_SEM} \
--new_sem_dispnet=${NEW_SEM_DISPNET} \
--new_sem_posenet=${NEW_SEM_POSENET} \
\
| tee ${OUTPUT_DIR}/depth_test_log_model.txt
#| tee ${OUTPUT_DIR}/depth_test_log_model${MODEL_INDEX}.txt
fi
## 2. Run the evaluation
python3 kitti_eval/eval_depth_vis.py \
--split=${SPLIT} \
--kitti_dir=${KITTI_DIR} \
--pred_file=${PRED_FILE} \
--vis_dir=${VIS_DIR} \
--interp=${INTERP} \
--vis_limit=${LIMIT} \
--show_vis=${SHOW_VIS} \
--mask_eval=${MASK_EVAL} \
--mask_kitti_dir=${MASK_KITTI_DIR} \
--mask_suffix=${MASK_SUFFIX} \
${MASK_BY_CHANNEL_START_INDEX} \
${MASK_BY_CHANNEL_END_INDEX} \
| tee ${OUTPUT_DIR}/depth_eval_log_model.txt
#| tee ${OUTPUT_DIR}/depth_eval_log_model${MODEL_INDEX}.txt