-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathPA_alg.py
80 lines (71 loc) · 3.41 KB
/
PA_alg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 5 17:12:45 2018
@author: mengxiaomao
"""
import numpy as np
dtype = np.float32
class PA_alg():
def __init__(self, M, K, maxP):
self.M = M
self.K = K
self.maxP = maxP
self.sigma2 = 1e-3*pow(10., -114./10.)
def Load_data(self, H2, p_array):
self.H2 = H2
self.p_array = p_array
self.N = H2.shape[0]
self.W = np.ones((self.N), dtype = dtype)
def Calculate(self):
return self.FP_algorithm(), self.WMMSE_algorithm(), self.Max_power(), self.Random_power()
def FP_algorithm(self):
P = np.random.rand(self.N) # maxP*np.ones((N))
P_extend = np.hstack([P, np.zeros((self.M - self.N + 1), dtype=dtype)])
P_matrix = np.reshape(P_extend[self.p_array], [self.N,self.K])
g_ii = self.H2[:,0]
for cou in range(100):
P_last = P
gamma = g_ii * P_matrix[:,0] / (np.sum(self.H2[:,1:] * P_matrix[:,1:], axis=1) + self.sigma2)
y = np.sqrt(self.W * (1.+gamma) * g_ii * P_matrix[:,0]) / (np.sum(self.H2 * P_matrix, axis=1) + self.sigma2)
y_j = np.tile(np.expand_dims(y, axis=1), [1,self.K])
P = np.minimum(self.maxP, np.square(y) * self.W * (1.+gamma) * g_ii / np.sum(np.square(y_j)*self.H2, axis=1))
if np.linalg.norm(P_last - P) < 1e-3:
break
P_extend = np.hstack([P, np.zeros((self.M - self.N + 1), dtype=dtype)])
P_matrix = np.reshape(P_extend[self.p_array], [self.N,self.K])
return P
def WMMSE_algorithm(self):
hkk = np.sqrt(self.H2[:,0])
v = np.random.rand(self.N) # maxP*np.ones((N))
V_extend = np.hstack([v, np.zeros(((self.M - self.N + 1)), dtype=dtype)])
V = np.reshape(V_extend[self.p_array], [self.N,self.K])
u = hkk*v / (np.sum(self.H2*V**2, axis=1) + self.sigma2)
w = 1. / (1. - u * hkk * v)
C = np.sum(w)
W_extend = np.hstack([w, np.zeros((self.M - self.N + 1), dtype=dtype)])
W = np.reshape(W_extend[self.p_array], [self.N,self.K])
U_extend = np.hstack([u, np.zeros((self.M - self.N + 1), dtype=dtype)])
U = np.reshape(U_extend[self.p_array], [self.N,self.K])
for cou in range(100):
C_last = C
v = w*u*hkk / np.sum(W*U**2*self.H2, axis=1)
v = np.minimum(np.sqrt(self.maxP), np.maximum(1e-10*np.random.rand(self.N), v))
V_extend = np.hstack([v, np.zeros((self.M - self.N + 1), dtype=dtype)])
V = np.reshape(V_extend[self.p_array], [self.N,self.K])
u = hkk*v / (np.sum(self.H2*V**2, axis=1) + self.sigma2)
w = 1. / (1. - u * hkk * v)
C = np.sum(w)
if np.abs(C_last - C) < 1e-3:
break
W_extend = np.hstack([w, np.zeros((self.M - self.N + 1), dtype=dtype)])
W = np.reshape(W_extend[self.p_array], [self.N,self.K])
U_extend = np.hstack([u, np.zeros((self.M - self.N + 1), dtype=dtype)])
U = np.reshape(U_extend[self.p_array], [self.N,self.K])
P = v**2
return P
def Max_power(self):
P = self.maxP*np.ones((self.N))
return P
def Random_power(self):
P = self.maxP*np.random.rand((self.N))
return P