-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpmdvResNet.py
501 lines (382 loc) · 20.2 KB
/
pmdvResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# ===================================================
# THIS FILE CONTAINS THE MIRROR SEGMENTATION MODEL.
# ResNet + Proposed Boundary Extraction Module
# ===================================================
# Reference source code:
# J. Lin, G. Wang, and R. H. Lau, "Progressive mirror detection,” in 2020
# IEEE/CVF Conference on Computer Vision and Pattern Recognition
# (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, June 2020,
# pp. 3694–3702.
# Repository: https://jiaying.link/cvpr2020-pgd/
# Mark Edward M. Gonzales & Lorene C. Uy:
# - Added annotations and comments
# - Modified the feature extraction backbone and replaced the edge detection and fusion module
import torch
import torch.nn.functional as F
from torch import nn
from backbone.resnext.resnext101_regular import ResNeXt101
from backbone.resnet import resnet
# =====================================
# Convolutional block attention module
# =====================================
# Reference source code:
# S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: Convolutional
# block attention module,” in Computer Vision – ECCV 2018, V. Ferrari,
# M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer
# International Publishing, 2018, pp. 3–19
# Repository: https://github.com/Jongchan/attention-module
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class ChannelGate(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg']):
super(ChannelGate, self).__init__()
self.gate_channels = gate_channels
self.mlp = nn.Sequential(
Flatten(),
nn.Linear(gate_channels, gate_channels // reduction_ratio),
nn.ReLU(),
nn.Linear(gate_channels // reduction_ratio, gate_channels)
)
self.pool_types = pool_types
def forward(self, x):
channel_att_sum = None
for pool_type in self.pool_types:
if pool_type == 'avg':
avg_pool = F.avg_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp(avg_pool)
elif pool_type == 'max':
max_pool = F.max_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp(max_pool)
elif pool_type == 'lp':
lp_pool = F.lp_pool2d(x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp(lp_pool)
elif pool_type == 'lse':
# LSE pool only
lse_pool = logsumexp_2d(x)
channel_att_raw = self.mlp(lse_pool)
if channel_att_sum is None:
channel_att_sum = channel_att_raw
else:
channel_att_sum = channel_att_sum + channel_att_raw
scale = F.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
return x * scale
def logsumexp_2d(tensor):
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
return outputs
class ChannelPool(nn.Module):
def forward(self, x):
return torch.mean(x, 1).unsqueeze(1)
class SpatialGate(nn.Module):
def __init__(self):
super(SpatialGate, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(1, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = F.sigmoid(x_out)
return x * scale
class CBAM(nn.Module):
def __init__(self, gate_channels=128, reduction_ratio=16, pool_types=['avg'], no_spatial=False):
super(CBAM, self).__init__()
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
self.no_spatial = no_spatial
if not no_spatial:
self.SpatialGate = SpatialGate()
def forward(self, x):
x_out = self.ChannelGate(x)
if not self.no_spatial:
x_out = self.SpatialGate(x_out)
return x_out
# ==============================================
# Relational Contextual Contrasted Local Module
# ==============================================
class Contrast_Module_Deep(nn.Module):
def __init__(self, planes, d1, d2):
super(Contrast_Module_Deep, self).__init__()
self.inplanes = int(planes)
self.inplanes_half = int(planes / 2)
self.outplanes = int(planes / 4)
self.conv1 = nn.Sequential(nn.Conv2d(self.inplanes, self.inplanes_half, 3, 1, 1),
nn.BatchNorm2d(self.inplanes_half), nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(self.inplanes_half, self.outplanes, 3, 1, 1),
nn.BatchNorm2d(self.outplanes), nn.ReLU())
self.contrast_block_1 = Contrast_Block_Deep(self.outplanes, d1, d2)
self.contrast_block_2 = Contrast_Block_Deep(self.outplanes,d1,d2)
self.contrast_block_3 = Contrast_Block_Deep(self.outplanes,d1,d2)
self.contrast_block_4 = Contrast_Block_Deep(self.outplanes,d1,d2)
self.cbam = CBAM(self.inplanes)
def forward(self, x):
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
contrast_block_1 = self.contrast_block_1(conv2)
contrast_block_2 = self.contrast_block_2(contrast_block_1)
contrast_block_3 = self.contrast_block_3(contrast_block_2)
contrast_block_4 = self.contrast_block_4(contrast_block_3)
output = self.cbam(torch.cat((contrast_block_1, contrast_block_2, contrast_block_3, contrast_block_4), 1))
return output
class Contrast_Block_Deep(nn.Module):
def __init__(self, planes, d1, d2):
super(Contrast_Block_Deep, self).__init__()
self.inplanes = int(planes)
self.outplanes = int(planes / 2)
self.local_1 = nn.Conv2d(self.inplanes, self.outplanes, kernel_size=3, stride=1, padding=1, dilation=1)
self.context_1 = nn.Conv2d(self.inplanes, self.outplanes, kernel_size=3, stride=1, padding=d1, dilation=d1)
self.local_2 = nn.Conv2d(self.inplanes, self.outplanes, kernel_size=3, stride=1, padding=1, dilation=1)
self.context_2 = nn.Conv2d(self.inplanes, self.outplanes, kernel_size=3, stride=1, padding=d2, dilation=d2)
self.bn1 = nn.BatchNorm2d(self.outplanes)
self.bn2 = nn.BatchNorm2d(self.outplanes)
self.relu = nn.ReLU()
self.cbam = CBAM(self.inplanes)
def forward(self, x):
local_1 = self.local_1(x)
context_1 = self.context_1(x)
ccl_1 = local_1 - context_1
ccl_1 = self.bn1(ccl_1)
ccl_1 = self.relu(ccl_1)
local_2 = self.local_2(x)
context_2 = self.context_2(x)
ccl_2 = local_2 - context_2
ccl_2 = self.bn2(ccl_2)
ccl_2 = self.relu(ccl_2)
output = self.cbam(torch.cat((ccl_1, ccl_2), 1))
return output
class Resudial_Block(nn.Module):
def __init__(self, in_c):
super(Resudial_Block, self).__init__()
self.conv1 = nn.Conv2d(in_c, out_channels=64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, 3, 1, 1)
self.bn2 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = x + shortcut
x = self.relu(x)
return x
# ==================
# Refinement module
# ==================
class Refinement_Net(nn.Module):
def __init__(self, in_c):
super(Refinement_Net, self).__init__()
self.conv1 = BasicConv(in_planes=in_c, out_planes=64, kernel_size=3, stride=1, padding=1)
self.conv2 = BasicConv(in_planes=64, out_planes=64, kernel_size=3, stride=1, padding=1)
self.res1 = Resudial_Block(64)
self.res2 = Resudial_Block(64)
self.res3 = Resudial_Block(64)
self.final_conv = nn.Conv2d(64 + 1, 1, 3, 1, 1)
def forward(self, image, saliency_map, edge):
fusion = torch.cat((edge, saliency_map, image), 1)
fusion = self.conv1(fusion)
fusion = self.conv2(fusion)
fusion = self.res1(fusion)
fusion = self.res2(fusion)
fusion = self.res3(fusion)
fusion = self.final_conv(torch.cat((saliency_map, fusion), 1))
return fusion
def INF(B,H,W):
return -torch.diag(torch.tensor(float("inf")).cuda().repeat(H),0).unsqueeze(0).repeat(B*W,1,1)
# =============================
# Criss-Cross Attention Module
# =============================
# Reference source code:
# Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei and W. Liu,
# "CCNet: Criss-Cross Attention for Semantic Segmentation,"
# 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
# 2019, pp. 603-612, doi: 10.1109/ICCV.2019.00069.
# Repository: https://github.com/Serge-weihao/CCNet-Pure-Pytorch
class RAttention(nn.Module):
def __init__(self,in_dim):
super(RAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
self.softmax = nn.Softmax(dim=3)
self.INF = INF
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
m_batchsize, _, height, width = x.size()
proj_query = self.query_conv(x)
proj_query_H = proj_query.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height).permute(0, 2, 1)
proj_query_W = proj_query.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width).permute(0, 2, 1)
proj_query_LR = torch.diagonal(proj_query, 0, 2, 3)
proj_query_RL = torch.diagonal(torch.transpose(proj_query, 2, 3), 0, 2, 3)
proj_key = self.key_conv(x)
proj_key_H = proj_key.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
proj_key_W = proj_key.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
proj_key_LR = torch.diagonal(proj_key, 0, 2, 3).permute(0,2,1).contiguous()
proj_key_RL = torch.diagonal(torch.transpose(proj_key, 2, 3), 0, 2, 3).permute(0,2,1).contiguous()
proj_value = self.value_conv(x)
proj_value_H = proj_value.permute(0,3,1,2).contiguous().view(m_batchsize*width,-1,height)
proj_value_W = proj_value.permute(0,2,1,3).contiguous().view(m_batchsize*height,-1,width)
proj_value_LR = torch.diagonal(proj_value, 0, 2, 3)
proj_value_RL = torch.diagonal(torch.transpose(proj_value, 2, 3), 0, 2, 3)
energy_H = (torch.bmm(proj_query_H, proj_key_H)+self.INF(m_batchsize, height, width)).view(m_batchsize,width,height,height).permute(0,2,1,3)
energy_W = torch.bmm(proj_query_W, proj_key_W).view(m_batchsize,height,width,width)
energy_LR = torch.bmm(proj_key_LR, proj_query_LR)
energy_RL = torch.bmm(proj_key_RL, proj_query_RL)
concate = self.softmax(torch.cat([energy_H, energy_W], 3))
att_H = concate[:,:,:,0:height].permute(0,2,1,3).contiguous().view(m_batchsize*width,height,height)
att_W = concate[:,:,:,height:height+width].contiguous().view(m_batchsize*height,width,width)
out_H = torch.bmm(proj_value_H, att_H.permute(0, 2, 1)).view(m_batchsize,width,-1,height).permute(0,2,3,1)
out_W = torch.bmm(proj_value_W, att_W.permute(0, 2, 1)).view(m_batchsize,height,-1,width).permute(0,2,1,3)
out_LR = self.softmax(torch.bmm(proj_value_LR, energy_LR).unsqueeze(-1))
out_RL = self.softmax(torch.bmm(proj_value_RL, energy_RL).unsqueeze(-1))
return self.gamma*(out_H + out_W + out_LR + out_RL) + x
class Relation_Attention(nn.Module):
def __init__(self, in_channels, out_channels):
super(Relation_Attention, self).__init__()
inter_channels = in_channels // 4
self.conva = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(inter_channels),nn.ReLU(inplace=False))
self.ra = RAttention(inter_channels)
self.convb = nn.Sequential(nn.Conv2d(inter_channels, out_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(out_channels), nn.ReLU(inplace=False))
def forward(self, x, recurrence=2):
output = self.conva(x)
for i in range(recurrence):
output = self.ra(output)
output = self.convb(output)
return output
# ===================================================
# Proposed Boundary Extraction and Prediction Module
# ===================================================
class BFE_Module(nn.Module):
def __init__(self, planes):
super(BFE_Module, self).__init__()
self.inplanes = 256
self.inplanes_half = 128
self.edge_layer1 = nn.Sequential(nn.Conv2d(self.inplanes, self.inplanes_half, 1, 1, dilation = 1),
nn.BatchNorm2d(self.inplanes_half), nn.ReLU())
self.edge_layer2 = nn.Sequential(nn.Conv2d(self.inplanes, self.inplanes_half, 3, 1, dilation = 1),
nn.BatchNorm2d(self.inplanes_half), nn.ReLU())
self.edge_layer3 = nn.Sequential(nn.Conv2d(self.inplanes, self.inplanes_half, 3, 1, dilation = 2),
nn.BatchNorm2d(self.inplanes_half), nn.ReLU())
self.edge_layer4 = nn.Sequential(nn.Conv2d(self.inplanes, self.inplanes_half, 3, 1, dilation = 4),
nn.BatchNorm2d(self.inplanes_half), nn.ReLU())
self.cbam = CBAM(self.inplanes)
def forward(self, x):
conv1 = self.edge_layer1(x)
conv2 = self.edge_layer2(x)
conv2 = F.upsample(conv2, size=x.size()[2:], mode='bilinear', align_corners=True)
conv3 = self.edge_layer3(x)
conv3 = F.upsample(conv2, size=x.size()[2:], mode='bilinear', align_corners=True)
conv4 = self.edge_layer4(x)
conv4 = F.upsample(conv2, size=x.size()[2:], mode='bilinear', align_corners=True)
output = torch.cat((conv1, conv2, conv3, conv4), 1)
return output
# ========
# Network
# ========
class PMDLite(nn.Module):
def __init__(self, backbone_path=None, training=False):
super(PMDLite, self).__init__()
backbone_path = "backbone/resnet/resnet50-19c8e357.pth"
resnet50 = resnet.resnet50(backbone_path)
self.layer0 = nn.Sequential(resnet50.conv1, resnet50.bn1, resnet50.relu)
self.layer1 = nn.Sequential(resnet50.maxpool, resnet50.layer1)
self.layer2 = resnet50.layer2
self.layer3 = resnet50.layer3
self.layer4 = resnet50.layer4
self.edge_extract = BFE_Module(2048)
self.edge_predict = nn.Sequential(nn.Conv2d(1024, 512, 1, 1, 1), nn.BatchNorm2d(512),
nn.ReLU(), nn.Conv2d(512, 1, 3, 1, 1))
self.contrast_4 = Contrast_Module_Deep(2048,d1=2, d2=4)
self.contrast_3 = Contrast_Module_Deep(1024,d1=4, d2=8)
self.contrast_2 = Contrast_Module_Deep(512, d1=4, d2=8)
self.contrast_1 = Contrast_Module_Deep(256, d1=4, d2=8)
self.ra_4 = Relation_Attention(2048, 2048)
self.ra_3 = Relation_Attention(1024, 1024)
self.ra_2 = Relation_Attention(512, 512)
self.ra_1 = Relation_Attention(256, 256)
self.up_4 = nn.Sequential(nn.ConvTranspose2d(2048, 512, 4, 2, 1), nn.BatchNorm2d(512), nn.ReLU())
self.up_3 = nn.Sequential(nn.ConvTranspose2d(1024, 256, 4, 2, 1), nn.BatchNorm2d(256), nn.ReLU())
self.up_2 = nn.Sequential(nn.ConvTranspose2d(512, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.ReLU())
self.up_1 = nn.Sequential(nn.ConvTranspose2d(256, 64, 4, 2, 1), nn.BatchNorm2d(64), nn.ReLU())
self.cbam_4 = CBAM(512)
self.cbam_3 = CBAM(256)
self.cbam_2 = CBAM(128)
self.cbam_1 = CBAM(64)
self.layer4_predict = nn.Conv2d(512, 1, 3, 1, 1)
self.layer3_predict = nn.Conv2d(256, 1, 3, 1, 1)
self.layer2_predict = nn.Conv2d(128, 1, 3, 1, 1)
self.layer1_predict = nn.Conv2d(64, 1, 3, 1, 1)
self.refinement = nn.Conv2d(1+1+3+1+1+1, 1, 1, 1, 0)
for m in self.modules():
if isinstance(m, nn.ReLU):
m.inplace = True
def forward(self, x):
layer0 = self.layer0(x)
layer1 = self.layer1(layer0)
layer2 = self.layer2(layer1)
layer3 = self.layer3(layer2)
layer4 = self.layer4(layer3)
contrast_4 = self.contrast_4(layer4)
cc_att_map_4 = self.ra_4(layer4)
final_contrast_4 = contrast_4 * cc_att_map_4
up_4 = self.up_4(final_contrast_4)
cbam_4 = self.cbam_4(up_4)
layer4_predict = self.layer4_predict(cbam_4)
layer4_map = F.sigmoid(layer4_predict)
contrast_3 = self.contrast_3(layer3 * layer4_map)
cc_att_map_3 = self.ra_3(layer3 * layer4_map)
final_contrast_3 = contrast_3 * cc_att_map_3
up_3 = self.up_3(final_contrast_3)
cbam_3 = self.cbam_3(up_3)
layer3_predict = self.layer3_predict(cbam_3)
layer3_map = F.sigmoid(layer3_predict)
contrast_2 = self.contrast_2(layer2 * layer3_map)
cc_att_map_2 = self.ra_2(layer2 * layer3_map)
final_contrast_2 = contrast_2 * cc_att_map_2
up_2 = self.up_2(final_contrast_2)
cbam_2 = self.cbam_2(up_2)
layer2_predict = self.layer2_predict(cbam_2)
layer2_map = F.sigmoid(layer2_predict)
contrast_1 = self.contrast_1(layer1 * layer2_map)
cc_att_map_1 = self.ra_1(layer1 * layer2_map)
final_contrast_1 = contrast_1 * cc_att_map_1
up_1 = self.up_1(final_contrast_1)
cbam_1 = self.cbam_1(up_1)
layer1_predict = self.layer1_predict(cbam_1)
edge_feature = self.edge_extract(layer1)
layer4_edge_feature = F.upsample(cbam_4, size=edge_feature.size()[2:], mode='bilinear', align_corners=True)
final_edge_feature = torch.cat( (edge_feature, layer4_edge_feature), 1)
layer0_edge = self.edge_predict(final_edge_feature)
layer4_predict = F.upsample(layer4_predict, size=x.size()[2:], mode='bilinear', align_corners=True)
layer3_predict = F.upsample(layer3_predict, size=x.size()[2:], mode='bilinear', align_corners=True)
layer2_predict = F.upsample(layer2_predict, size=x.size()[2:], mode='bilinear', align_corners=True)
layer1_predict = F.upsample(layer1_predict, size=x.size()[2:], mode='bilinear', align_corners=True)
layer0_edge = F.upsample(layer0_edge, size=x.size()[2:], mode='bilinear', align_corners=True)
final_features = torch.cat((x, layer1_predict, layer0_edge, layer2_predict, layer3_predict, layer4_predict),1)
final_predict = self.refinement(final_features)
final_predict = F.upsample(final_predict, size=x.size()[2:], mode='bilinear', align_corners=True)
if self.training:
return layer4_predict, layer3_predict, layer2_predict, layer1_predict, layer0_edge, final_predict
return F.sigmoid(layer4_predict), F.sigmoid(layer3_predict), F.sigmoid(layer2_predict), \
F.sigmoid(layer1_predict), F.sigmoid(layer0_edge), F.sigmoid(final_predict)