-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtowers_of_hanoi.py
64 lines (54 loc) · 1.85 KB
/
towers_of_hanoi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from stack import Stack
print("\nLet's play Towers of Hanoi!!")
#Create the Stacks
stacks = []
left_stack = Stack("Left")
middle_stack = Stack("Middle")
right_stack = Stack("Right")
stacks.append(left_stack)
stacks.append(middle_stack)
stacks.append(right_stack)
#print(stacks)
#Set up the Game
num_disks = int(input("\nHow many disks do you want to play with?\n"))
while num_disks < 3:
print("\nMust have at least 3 disks to play.")
num_disks = int(input("\nHow many disks do you want to play with?\n"))
for i in range(num_disks, 0, -1):
left_stack.push(i)
num_optimal_moves = ((2**num_disks)-1)
print("\nThe fastest you can solve this game is in {n} moves.".format(n=num_optimal_moves))
#Get User Input
def get_input():
choices = [stack.get_name()[0] for stack in stacks]
while True:
for i in range(len(stacks)):
name = stacks[i].get_name()
letter = choices[i]
print("Enter {l} for {n}".format(l=letter, n=name))
user_input = input("").upper()
if user_input in choices:
for i in range(len(stacks)):
if user_input == choices[i]:
return stacks[i]
#Play the Game
num_user_moves = 0
while not right_stack.get_size() == num_disks:
print("\n\n\n...Current Stacks...")
for stack in stacks:
stack.print_items()
while True:
print("\nWhich stack do you want to move from?\n")
from_stack = get_input()
print("\nWhich stack do you want to move to?\n")
to_stack = get_input()
if from_stack.is_empty():
print("\nInvalid Move. Try Again")
elif to_stack.is_empty() or from_stack.peek() < to_stack.peek():
disk = from_stack.pop()
to_stack.push(disk)
num_user_moves += 1
break
else:
print("\n\nInvalid Move. Try Again")
print("\n\nYou completed the game in {n} moves, and the optimal number of moves is {o}".format(n=num_user_moves, o=num_optimal_moves))