-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimplest-ann-sigmoid_NO_GRAPH.js
305 lines (252 loc) · 8.05 KB
/
simplest-ann-sigmoid_NO_GRAPH.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
(() => { //begin iife
let canvas = document.getElementById("simplest-ann-sigmoid")
let ctx = canvas.getContext("2d")
// set starting values
let fps = 60
// progress indicators
let prevPercent = undefined
let startPercent = 10
let percent = startPercent
let maxPercent = 90
let direction = 1
let neuronRadius = 60
let numberOfNeurons = 5
let numberOfLayers = 3
// input, h1, output
let layerOffsets = Array(numberOfLayers).fill().map( (v, i) => i * (neuronRadius * 4) + 100 )
// n1 n2 n3 n4
let verticalOffsets = Array(numberOfNeurons).fill().map( (v, i) => (1 + i) * (neuronRadius * 1.5) )
// other settings
let layerAnimationCounter = 0
let font = "24px Baskerville"
// init neurons and weights
// input layer
let x1 = {x: layerOffsets[0], y: verticalOffsets[0], r: neuronRadius, color: "#9ADBFF", initValue: 0.5,
type: "input", weights: [0.25]}
let b1 = {x: layerOffsets[0], y: verticalOffsets[2], r: neuronRadius, color: "#AD9AFF", initValue: 1.0,
type: "bias", weights: [1]}
let l1 = [x1, b1]
let y1 = {x: layerOffsets[1], y: verticalOffsets[0], r: neuronRadius, color: "#9AFFBD",
type: "output", weights: [0.57]}
let l2 = [y1]
let allNeurons = [l1, l2]
let sig = z => 1 / (1 + Math.exp(-z))
// draw the neurons and axons
for(let i = 0; i < allNeurons.length; i++){
let layer = allNeurons[i]
for(let j = 0; j < layer.length; j++){
let neuron = layer[j]
drawNeuron(allNeurons[i][j])
if(neuron.type !== "output"){
for(let k = 0; k < neuron.weights.length; k++){
let outputNeuron = allNeurons[i + 1][k]
let axonWeight = neuron.weights[k]
drawAxon({a: neuron, b: outputNeuron}, axonWeight)
}
}
}
}
draw()
function calculate(input, output){
output.forEach( (out, i) => {
// remove output
ctx.clearRect(out.x - out.r, out.y - out.r, out.r * 2, out.r * 2)
// calculate activation
let activation = input.map((val, j) => {
return val.weights[i] * val.initValue
}).reduce((a, b) => {
return a + b
})
out.initValue = sig(activation)
drawNeuron(out)
})
}
// the draw loop
function draw(){
let simplest_ann_xout = document.getElementById("simplest-ann-sigmoid-slider-x").value
let simplest_ann_bout = document.getElementById("simplest-ann-sigmoid-slider-b").value
let simplest_ann_wxout = document.getElementById("simplest-ann-sigmoid-slider-wx").value
// let simplest_ann_wbout = document.getElementById("simplest-ann-slider-wb").value
x1.initValue = parseFloat(simplest_ann_xout)
x1.weights[0] = parseFloat(simplest_ann_wxout)
b1.initValue = parseFloat(simplest_ann_bout)
// b1.weights[0] = parseFloat(simplest_ann_wbout)
//need to draw input neurons for slider changes
let inputNeurons = allNeurons[0]
for(let j = 0; j < inputNeurons.length; j++){
let neuron = inputNeurons[j]
drawNeuron(neuron)
}
let i = layerAnimationCounter
let layer = allNeurons[i]
let axonInfos = []
for(let j = 0; j < layer.length; j++){
let neuron = layer[j]
for(let k = 0; k < neuron.weights.length; k++){
let outputNeuron = allNeurons[i + 1][k]
let axonWeight = neuron.weights[k]
let dot = animateAxon({a: neuron, b: outputNeuron}, axonWeight)
axonInfos.push({
dot: dot,
a: neuron,
b: outputNeuron,
w: axonWeight
})
}
}
//prep for next draw loop
prevPercent = percent
percent += direction
if (percent >= maxPercent) {
let inputLayer = allNeurons[i]
let outputLayer = allNeurons[i + 1].filter(val => val.type != "bias")
calculate(inputLayer, outputLayer)
//delete dots
for(let j = 0; j < axonInfos.length; j++){
let info = axonInfos[j]
let dot = info.dot
ctx.clearRect(dot.prevX - (dot.r + 2), dot.prevY - (dot.r + 2), dot.r * 2 + 5, dot.r * 2 + 5)
}
for(let j = 0; j < axonInfos.length; j++){
let info = axonInfos[j]
drawAxon({a: info.a, b: info.b}, info.w)
}
percent = startPercent
layerAnimationCounter++
if(layerAnimationCounter >= allNeurons.length - 1){
layerAnimationCounter = 0
}
}
setTimeout(function () {
requestAnimationFrame(draw);
}, 1000 / fps);
}
function animateAxon(neurons, weight) {
let {a, b} = neurons
let start = {
x: a.x + a.r,
y: a.y
}
let end = {
x: b.x - b.r,
y: b.y
}
// redraw path
let clearedAxon = {
width: 200,
height: 40
}
let x = start.x
let y = (start.y - (clearedAxon.height / 2))
let width = clearedAxon.width
let height = clearedAxon.height
let dx = end.x - start.x
let dy = end.y - start.y
let step = percent/100
let prevStep = prevPercent / 100
let dot = {
r: 8,
color: "#5DB6E6",
x: start.x + dx * step,
y: start.y + dy * step,
prevX: start.x + dx * prevStep,
prevY: start.y + dy * prevStep,
}
// x y width height
ctx.clearRect(dot.prevX - (dot.r + 2), dot.prevY - (dot.r + 2), dot.r * 2 + 4, dot.r * 2 + 4)
ctx.lineWidth = 1
ctx.beginPath()
ctx.moveTo(start.x, start.y)
ctx.lineTo(end.x, end.y)
ctx.strokeStyle = 'black'
ctx.stroke()
drawDot(dot)
//draw weight
start.wx = start.x + (end.x - start.x) / 4
start.wy = start.y + (end.y - start.y) / 4
ctx.beginPath()
ctx.rect(start.wx - 25, start.wy - 40, 60, 25)
ctx.fillStyle = "white"
ctx.fill()
ctx.stroke()
ctx.closePath()
ctx.font = font
ctx.textAlign = "center"
ctx.fillStyle = "black"
ctx.fillText(weight, start.wx, start.wy - 20)
return dot;
}
function drawAxon(neurons, weight) {
let {a, b} = neurons
let start = {
x: a.x + a.r,
y: a.y
}
let end = {
x: b.x - b.r,
y: b.y
}
ctx.lineWidth = 1
ctx.beginPath()
ctx.moveTo(start.x, start.y)
ctx.lineTo(end.x, end.y)
ctx.strokeStyle = 'black'
ctx.stroke()
//draw weight
start.wx = start.x + (end.x - start.x) / 4
start.wy = start.y + (end.y - start.y) / 4
ctx.beginPath()
ctx.rect(start.wx - 25, start.wy - 40, 60, 25)
ctx.fillStyle = "white"
ctx.fill()
ctx.stroke()
ctx.closePath()
ctx.font = font
ctx.textAlign = "center"
ctx.fillStyle = "black"
ctx.fillText(weight, start.wx, start.wy - 20)
}
// draw tracking dot at xy
function drawDot(dot) {
ctx.fillStyle = dot.color
ctx.strokeStyle = "black"
ctx.lineWidth = 1
ctx.beginPath()
// x The x-coordinate of the center of the circle
// y The y-coordinate of the center of the circle
// r The radius of the circle
// sAngle The starting angle, in radians (0 is at the 3 o'clock position of the arc's circle)
// eAngle The ending angle, in radians
// counterclockwise Optional. Specifies whether the drawing should be counterclockwise or clockwise. False is default, and indicates clockwise, while true indicates counter-clockwise.
ctx.arc(dot.x, dot.y, dot.r, 0, Math.PI * 2, false)
ctx.closePath()
ctx.fill()
ctx.stroke()
}
// draw tracking dot at xy
function drawNeuron(opts) {
ctx.fillStyle = opts.color
ctx.strokeStyle = "black"
ctx.lineWidth = 1
ctx.beginPath()
ctx.arc(opts.x, opts.y, opts.r, 0, Math.PI * 2, false)
ctx.closePath()
ctx.fill()
ctx.stroke()
ctx.font = font
ctx.textAlign = "center"
ctx.fillStyle = "black"
let neuronValue = 0
if(opts.initValue) {
neuronValue = opts.initValue.toFixed(2)
}
ctx.fillText(neuronValue, opts.x, opts.y + 10)
}
function debugRect(x, y, width, height){
ctx.beginPath()
ctx.rect(x, y, width, height)
ctx.fill()
ctx.stroke()
ctx.closePath()
}
})() //end iife