-
Notifications
You must be signed in to change notification settings - Fork 2
/
fullmatch.py
203 lines (166 loc) · 8.21 KB
/
fullmatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import logging
import random
import warnings
import numpy as np
import megengine
import megengine.functional as F
import megengine.module as M
import megengine.optimizer as optim
import megengine.autodiff as autodiff
import megengine.distributed as dist
import megengine.data as data
from train_utils import TBLog, get_optimizer
from utils import get_logger, net_builder, str2bool, over_write_args_from_file
from models.fullmatch.fullmatch import FullMatch
from datasets.ssl_dataset import SSL_Dataset
def worker(args):
args.world_size = dist.get_world_size()
args.gpu = dist.get_rank()
save_path = os.path.join(args.save_dir, args.save_name)
if args.seed is not None:
random.seed(args.seed)
megengine.random.seed(args.seed)
np.random.seed(args.seed)
save_path = os.path.join(args.save_dir, args.save_name)
logger_level = "WARNING"
tb_log = None
if args.gpu == 0 :
tb_log = TBLog(args.save_dir, args.save_name)
logger_level = "INFO"
logger = get_logger(args.save_name, save_path, logger_level)
logger.warning(f"USE GPU: {args.gpu} for training")
if args.dataset.upper() == 'CIFAR100' and args.num_labels==400 and args.world_size > 1:
args.sync_bn = True
args.bn_momentum = 0.999
if 'imagenet' in args.dataset.lower():
print('Please Waiting for Supporting')
exit()
else:
_net_builder = net_builder(args.net, args.net_from_name,
{'first_stride': 2 if 'stl' in args.dataset else 1,
'depth': args.depth,
'widen_factor': args.widen_factor,
'leaky_slope': args.leaky_slope,
'bn_momentum': args.bn_momentum,
'dropRate': args.dropout,
'use_embed': False,
'is_remix': False,
'sync_bn': args.sync_bn},)
model = FullMatch(_net_builder, args.num_classes, args.ema_m, args.p_cutoff, args.ulb_loss_ratio, args.hard_label,
num_eval_iter=args.num_eval_iter, tb_log=tb_log, logger=logger)
optimizer = get_optimizer(model.model, args.optim, args.lr, args.momentum, args.weight_decay)
model.set_optimizer(optimizer)
if args.resume:
logger.info("==> Resuming from checkpoint..")
assert os.path.isfile(args.resume), "Error: no checkpoint directory found!"
checkpoint = megengine.load(args.resume, map_location='cpu')
model.model.load_state_dict(checkpoint['state_dict'])
model.ema.ema.load_state_dict(checkpoint['ema_state_dict'])
megengine.distributed.group_barrier()
args.batch_size = int(args.batch_size / args.world_size)
logger.info(f"model_arch: {model}")
if args.dataset != "imagenet":
if args.gpu != 0:
megengine.distributed.group_barrier()
train_dset = SSL_Dataset(args, name=args.dataset, train=True, num_classes=args.num_classes, data_dir=args.data_dir)
lb_dset, ulb_dset = train_dset.get_ssl_dset(args.num_labels)
_eval_dset = SSL_Dataset(args, name=args.dataset, train=False, num_classes=args.num_classes, data_dir=args.data_dir)
eval_dset = _eval_dset.get_dset()
if args.gpu == 0:
megengine.distributed.group_barrier()
else:
print('Please Waiting for Supporting')
exit()
loader_dict = {}
dset_dict = {'train_lb': lb_dset, 'train_ulb': ulb_dset, 'eval': eval_dset}
loader_dict['train_lb'] = data.DataLoader(dset_dict['train_lb'],
sampler= data.Infinite(data.RandomSampler(dset_dict['train_lb'], batch_size=args.batch_size)),
num_workers=args.num_workers)
loader_dict['train_ulb'] = data.DataLoader(dset_dict['train_ulb'],
sampler=data.Infinite(data.RandomSampler(dset_dict['train_ulb'], batch_size=args.batch_size*args.uratio)),
num_workers=args.num_workers)
loader_dict['eval'] = data.DataLoader(dset_dict['eval'],
sampler=data.SequentialSampler(dset_dict['eval'], batch_size=args.eval_batch_size,),
num_workers=0)
model.set_data_loader(loader_dict)
megengine.distributed.group_barrier()
trainer = model.train
trainer(args, logger=logger)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='FullMatch Training')
'''
Saving & loading of the model.
'''
parser.add_argument('--save_dir', type=str, default='./saved_models')
parser.add_argument('-sn', '--save_name', type=str, default='fullmatch')
parser.add_argument('--resume', type=str,default=None)
'''
Training Configuration of FixMatch
'''
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--num_train_iter', type=int, default=2**20, help='total number of training iterations')
parser.add_argument('--num_eval_iter', type=int, default=1024, help='evaluation frequency')
parser.add_argument('-nl', '--num_labels', type=int, default=40)
parser.add_argument('-bsz', '--batch_size', type=int, default=64)
parser.add_argument('--uratio', type=int, default=7, help='the ratio of unlabeled data to labeld data in each mini-batch')
parser.add_argument('--eval_batch_size', type=int, default=1024, help='batch size of evaluation data loader')
parser.add_argument('--hard_label', type=str2bool, default=True)
parser.add_argument('--p_cutoff', type=float, default=0.95)
parser.add_argument('--ema_m', type=float, default=0.999, help='ema momentum for eval_model')
parser.add_argument('--ulb_loss_ratio', type=float, default=1.0)
parser.add_argument('--sync_bn', type=bool, default=False)
parser.add_argument('--loss_warm', type=bool, default=False)
'''
Optimizer configurations
'''
parser.add_argument('--optim', type=str, default='SGD')
parser.add_argument('--lr', type=float, default=3e-2)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-4)
'''
Backbone Net Configurations
'''
parser.add_argument('--net', type=str, default='WideResNet')
parser.add_argument('--net_from_name', type=str2bool, default=False)
parser.add_argument('--depth', type=int, default=28)
parser.add_argument('--widen_factor', type=int, default=2)
parser.add_argument('--leaky_slope', type=float, default=0.1)
parser.add_argument('--dropout', type=float, default=0.0)
'''
Data Configurations
'''
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('-ds', '--dataset', type=str, default='cifar10')
parser.add_argument('--train_sampler', type=str, default='RandomSampler')
parser.add_argument('-nc', '--num_classes', type=int, default=10)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--seed', default=2, type=int, help='seed for initializing training. ')
'''
multi-GPUs & Distrbitued Training
'''
parser.add_argument('-n','--ngpus', default=8, type=int,help='number of GPUs per node (default: None, use all available GPUs)',)
parser.add_argument('--dist-addr', default='localhost')
parser.add_argument('--dist-port', default=23456, type=int)
parser.add_argument('--world-size', default=1, type=int)
parser.add_argument('--rank', default=0, type=int)
parser.add_argument('--c', type=str, default='')
args = parser.parse_args()
over_write_args_from_file(args, args.c)
args.cur_dir = os.getcwd().split('/')[-1]
args.distributed = False
if args.ngpus is None:
args.ngpus = dist.helper.get_device_count_by_fork('gpu')
if args.world_size * args.ngpus > 1:
args.distributed = True
dist_worker = dist.launcher(
master_ip=args.dist_addr,
port=args.dist_port,
world_size=args.ngpus,
rank_start=args.rank * args.ngpus,
n_gpus=args.ngpus
)(worker)
dist_worker(args)
else:
worker(args)