From aaceb3515e7c295183ea8ad9861eb459d4d1d25c Mon Sep 17 00:00:00 2001 From: Patrick Hoefler <61934744+phofl@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:46:49 +0100 Subject: [PATCH] Backport PR #57322: REGR: Fix astype conversion of ea int to td/dt with missing values --- pandas/core/arrays/_utils.py | 13 ++++++++++--- pandas/tests/extension/test_arrow.py | 9 +++++++++ pandas/tests/series/methods/test_to_numpy.py | 13 +++++++++++++ 3 files changed, 32 insertions(+), 3 deletions(-) diff --git a/pandas/core/arrays/_utils.py b/pandas/core/arrays/_utils.py index 88091a88a4e12..6b46396d5efdf 100644 --- a/pandas/core/arrays/_utils.py +++ b/pandas/core/arrays/_utils.py @@ -39,14 +39,21 @@ def to_numpy_dtype_inference( dtype = arr.dtype.numpy_dtype # type: ignore[union-attr] elif dtype is not None: dtype = np.dtype(dtype) - if na_value is lib.no_default and hasna and dtype.kind == "f": - na_value = np.nan dtype_given = True else: dtype_given = True if na_value is lib.no_default: - na_value = arr.dtype.na_value + if dtype is None or not hasna: + na_value = arr.dtype.na_value + elif dtype.kind == "f": # type: ignore[union-attr] + na_value = np.nan + elif dtype.kind == "M": # type: ignore[union-attr] + na_value = np.datetime64("nat") + elif dtype.kind == "m": # type: ignore[union-attr] + na_value = np.timedelta64("nat") + else: + na_value = arr.dtype.na_value if not dtype_given and hasna: try: diff --git a/pandas/tests/extension/test_arrow.py b/pandas/tests/extension/test_arrow.py index 05a112e464677..e041093bbf5bc 100644 --- a/pandas/tests/extension/test_arrow.py +++ b/pandas/tests/extension/test_arrow.py @@ -3305,6 +3305,15 @@ def test_arrow_floordiv_floating_0_divisor(dtype): tm.assert_series_equal(result, expected) +@pytest.mark.parametrize("dtype", ["float64", "datetime64[ns]", "timedelta64[ns]"]) +def test_astype_int_with_null_to_numpy_dtype(dtype): + # GH 57093 + ser = pd.Series([1, None], dtype="int64[pyarrow]") + result = ser.astype(dtype) + expected = pd.Series([1, None], dtype=dtype) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("pa_type", tm.ALL_INT_PYARROW_DTYPES) def test_arrow_integral_floordiv_large_values(pa_type): # GH 56676 diff --git a/pandas/tests/series/methods/test_to_numpy.py b/pandas/tests/series/methods/test_to_numpy.py index 8dcc1dd551315..4bc7631090761 100644 --- a/pandas/tests/series/methods/test_to_numpy.py +++ b/pandas/tests/series/methods/test_to_numpy.py @@ -6,6 +6,7 @@ from pandas import ( NA, Series, + Timedelta, ) import pandas._testing as tm @@ -34,3 +35,15 @@ def test_to_numpy_arrow_dtype_given(): result = ser.to_numpy(dtype="float64") expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) + + +def test_astype_ea_int_to_td_ts(): + # GH#57093 + ser = Series([1, None], dtype="Int64") + result = ser.astype("m8[ns]") + expected = Series([1, Timedelta("nat")], dtype="m8[ns]") + tm.assert_series_equal(result, expected) + + result = ser.astype("M8[ns]") + expected = Series([1, Timedelta("nat")], dtype="M8[ns]") + tm.assert_series_equal(result, expected)