-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
247 lines (197 loc) · 10.3 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import streamlit as st
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import time
from sklearn.model_selection import KFold, cross_val_score, train_test_split, learning_curve
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import StackingClassifier
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.feature_selection import SelectKBest, f_classif
#Pystacknet
from pystacknet.pystacknet import StackNetClassifier
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier, GradientBoostingRegressor, RandomForestRegressor, ExtraTreesClassifier
st.title("Application du Machine Learing & Covid 19")
menus = ['Covid-19', 'About']
menu = st.sidebar.selectbox("Selectionner le menu", menus)
####COVID-19####
def encodage(df):
code = {'negative': 0,
'positive': 1,
'not_detected': 0,
'detected': 1
}
for col in df.select_dtypes('object').columns:
df.loc[:, col] = df[col].map(code)
return df
def imputation(df):
df = df.dropna(axis=0)
return df
def feature_engineering(df, viral_columns):
df['est malade'] = df[viral_columns].sum(axis=1) >= 1
df = df.drop(viral_columns, axis=1)
return df
def preprocessing(df):
X = df.drop('SARS-Cov-2 exam result', axis=1)
y = df['SARS-Cov-2 exam result']
return X, y
def get_Covid_19():
pd.set_option('display.max_row', 111)
pd.set_option('display.max_column', 111)
data = pd.read_excel('dataset.xlsx')
df = data.copy()
missing_rate = df.isna().sum() / df.shape[0]
blood_columns = list(df.columns[(missing_rate < 0.9) & (missing_rate > 0.88)])
viral_columns = list(df.columns[(missing_rate < 0.80) & (missing_rate > 0.75)])
important_columns = ['Patient age quantile', 'SARS-Cov-2 exam result']
df = df[important_columns + blood_columns + viral_columns]
df = df.reset_index()
df= df.rename(columns={"index": "Personne Id"})
df['index'] = df["Personne Id"].astype('int')
trainset, testset = train_test_split(df, test_size=0.2, random_state=0)
trainset = encodage(trainset)
testset = encodage(testset)
trainset = feature_engineering(trainset, viral_columns)
testset = feature_engineering(testset, viral_columns)
trainset = imputation(trainset)
testset = imputation(testset)
X_train, y_train = preprocessing(trainset)
X_test, y_test = preprocessing(testset)
st.dataframe(trainset.head())
return X_train, X_test, y_train, y_test
def evaluation(model,X_train, X_test, y_train, y_test):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
N, train_score, val_score = learning_curve(model, X_train, y_train,
cv=4, scoring='f1',
train_sizes=np.linspace(0.1, 1, 10))
plt.figure(figsize=(12, 8))
st.pyplot(N, train_score.mean(axis=1), label="Train score")
st.pyplot(N, val_score.mean(axis=1), label="Validation score")
#####~Covid 19~#####
####Importer un fichier####
def is_binary_file(file_obj):
return not hasattr(file_obj, 'encoding')
def get_data():
uploaded_file_type = ['xlsx', 'csv', 'txt', 'xls']
fichier = st.file_uploader("Telecharger un fichier", uploaded_file_type)
if fichier is not None:
if is_binary_file(fichier):
data_set = pd.read_excel(fichier)
else:
data_set = pd.read_csv(fichier)
return data_set
else:
return None
####~Importer un fichier~####
####Stacking####
def get_stacking_1(models_selection, meta_model):
niveau_0 = list()
for i in range(len(models_selection)):
niveau_0.append((models_selection[i], models.get(models_selection[i])))
niveau_1 = meta_models.get(meta_model)
model = StackingClassifier(estimators=niveau_0, final_estimator=niveau_1, cv=5)
return model
####~Stacking~####
if menu == 'Covid-19':
st.sidebar.info("STACKNET MODEL")
models_1 = dict()
models_1["RandomFores"] = RandomForestClassifier(n_estimators=100, criterion="entropy", max_depth=5,max_features=0.5, random_state=1)
models_1["ExtraTree"] = ExtraTreesClassifier(n_estimators=100, criterion="entropy", max_depth=5,max_features=0.5, random_state=1)
models_1["GradiantBoosting"] = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=5,max_features=0.5, random_state=1)
models_1["Logistic Regression"] = LogisticRegression(random_state=1)
models_1["LDA"] = LinearDiscriminantAnalysis()
models_1["Cart"] = DecisionTreeClassifier()
models_1["Nb"] = GaussianNB()
models_1["KNN"] = KNeighborsClassifier()
models_1["Boosting"] = AdaBoostClassifier()
n_niveaux = st.sidebar.number_input("Entrer la taille (Max = 5)", min_value=2, max_value=5)
if n_niveaux:
selections = dict()
for i in range(0, n_niveaux):
selections[f'Niveau {i}'] = st.sidebar.multiselect(f'Niveau {i}', list(models_1.keys()))
st.sidebar.info("Configuration des paramaitre du stacknet")
metric_list = ['auc', 'logloss', 'accuracy', 'f1', 'matthews']
metrics = st.sidebar.selectbox("Metrique", metric_list)
folds = st.sidebar.slider("Folds", 4, 12)
restacking = st.sidebar.selectbox("Restacking", [False, True])
use_proba = st.sidebar.selectbox("Use Proba", [True, False])
use_retraining = st.sidebar.selectbox("Use Retraining", [True, False])
n_jobs = st.sidebar.slider("N Jobs", 1, 10)
param_stacknet = dict()
param_stacknet['folds'] = folds
param_stacknet['metric'] = metrics
param_stacknet['n_jobs'] = n_jobs
param_stacknet['random_state'] = 0
param_stacknet['restacking'] = restacking
param_stacknet['use_proba'] = use_proba
param_stacknet['use_retraining'] = use_retraining
param_stacknet['verbose'] = 1
terminer = st.sidebar.checkbox("terminer")
if (len(selections) >= 2) & terminer:
if st.checkbox("Les modéles sélectionnées") & terminer:
for names, models in selections.items():
st.text(f'{names}, {models}')
if st.checkbox("Générer le model stacking"):
niveaux = dict()
for name, models in selections.items():
les_models = list()
for i in range(len(models)):
les_models.append(models_1.get(models[i]))
niveaux[name] = les_models
pystacknet_model = list()
for models in niveaux.values():
pystacknet_model.append(models)
model = StackNetClassifier(pystacknet_model,
metric=param_stacknet["metric"],
folds=param_stacknet['folds'],
restacking=param_stacknet['restacking'],
use_retraining=param_stacknet['use_retraining'],
use_proba=param_stacknet['use_proba'],
random_state=param_stacknet['random_state'],
n_jobs=param_stacknet['n_jobs'],
verbose=param_stacknet['verbose'])
if model:
st.info("Génération du model StackNet est terminé")
choix = st.checkbox("Afficher le datasetCovid")
if choix:
X_train, X_test, y_train, y_test = get_Covid_19()
if st.checkbox("Affichez les shape"):
st.text(X_train.shape)
if st.checkbox("Evaluer") & choix:
model.fit(X_train, y_train)
output = model.predict_proba(X_test)
output_copy = output
output_copy = pd.DataFrame(output_copy)
output_copy = output_copy.reset_index()
output_copy = output_copy.rename(index=str, columns={'index': 'Personne Id', 0: 'Negative Proba',
1: 'Positive Proba'})
output_copy['Personne Id'] = output_copy.replace(range(0, 111), X_test['Personne Id'])
output_copy["Personne Id"] = output_copy["Personne Id"].astype("int")
output_copy["Covid test"] = output_copy['Negative Proba'] < output_copy['Positive Proba']
output_copy['Covid test'] = output_copy['Covid test'].replace([True, False], ['Positive', 'Negative'])
output_copy = output_copy[['Personne Id', 'Negative Proba', 'Positive Proba', 'Covid test']]
liste_des_personnes = output_copy['Personne Id'].to_list()
tableau = output[:, 0] < output[:, 1]
if output_copy is not None:
st.info("Evaluation et prédiction terminé avec succés, vous pouvez voire le fichier ou vous pouvez chercher une personne.")
output_copy.to_csv("covid19resu.csv", index=False, header=True)
personne = st.multiselect("Chercher l'id", liste_des_personnes)
if personne:
st.success("Personne trouvé, voila les resultats")
recherche_resultat = output_copy[output_copy['Personne Id'] == personne[0]]
st.dataframe(recherche_resultat)
if st.checkbox("Afficher la table de confusion..."):
st.text(confusion_matrix(y_test, tableau))
else:
st.error("Erreur Essayer plus tard...")