(简体中文|English)
在一些场景中,可能使用多个相同输入的模型并行集成预测以获得更好的预测效果,Paddle Serving提供了这项功能。
下面将以文本分类任务为例,来展示Paddle Serving的集成预测功能(暂时还是串行预测,我们会尽快支持并行化)。
该样例中(见下图),Server端在一项服务中并行预测相同输入的BOW和CNN模型,Client端获取两个模型的预测结果并进行后处理,得到最终的预测结果。
需要注意的是,目前只支持在同一个服务中使用多个相同格式输入输出的模型。在该例子中,CNN模型和BOW模型的输入输出格式是相同的。
样例中用到的代码保存在python/examples/imdb
路径下:
.
├── get_data.sh
├── imdb_reader.py
├── test_ensemble_client.py
└── test_ensemble_server.py
通过下面命令获取预训练的CNN和BOW模型(您也可以直接运行get_data.sh
脚本):
wget --no-check-certificate https://fleet.bj.bcebos.com/text_classification_data.tar.gz
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/imdb-demo/imdb_model.tar.gz
tar -zxvf text_classification_data.tar.gz
tar -zxvf imdb_model.tar.gz
通过下面的Python代码启动Server端(您也可以直接运行test_ensemble_server.py
脚本):
from paddle_serving_server import OpMaker
from paddle_serving_server import OpGraphMaker
from paddle_serving_server import Server
op_maker = OpMaker()
read_op = op_maker.create('general_reader')
cnn_infer_op = op_maker.create(
'general_infer', engine_name='cnn', inputs=[read_op])
bow_infer_op = op_maker.create(
'general_infer', engine_name='bow', inputs=[read_op])
response_op = op_maker.create(
'general_response', inputs=[cnn_infer_op, bow_infer_op])
op_graph_maker = OpGraphMaker()
op_graph_maker.add_op(read_op)
op_graph_maker.add_op(cnn_infer_op)
op_graph_maker.add_op(bow_infer_op)
op_graph_maker.add_op(response_op)
server = Server()
server.set_op_graph(op_graph_maker.get_op_graph())
model_config = {cnn_infer_op: 'imdb_cnn_model', bow_infer_op: 'imdb_bow_model'}
server.load_model_config(model_config)
server.prepare_server(workdir="work_dir1", port=9393, device="cpu")
server.run_server()
与普通预测服务不同的是,这里我们需要用DAG来描述Server端的运行逻辑。
在创建Op的时候需要指定当前Op的前继(在该例子中,cnn_infer_op
与bow_infer_op
的前继均是read_op
,response_op
的前继是cnn_infer_op
和bow_infer_op
),对于预测Opinfer_op
还需要定义预测引擎名称engine_name
(也可以使用默认值,建议设置该值方便Client端获取预测结果)。
同时在配置模型路径时,需要以预测Op为key,对应的模型路径为value,创建模型配置字典,来告知Serving每个预测Op使用哪个模型。
通过下面的Python代码运行Client端(您也可以直接运行test_ensemble_client.py
脚本):
from paddle_serving_client import Client
from imdb_reader import IMDBDataset
client = Client()
# If you have more than one model, make sure that the input
# and output of more than one model are the same.
client.load_client_config('imdb_bow_client_conf/serving_client_conf.prototxt')
client.connect(["127.0.0.1:9393"])
# you can define any english sentence or dataset here
# This example reuses imdb reader in training, you
# can define your own data preprocessing easily.
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource('imdb.vocab')
for i in range(3):
line = 'i am very sad | 0'
word_ids, label = imdb_dataset.get_words_and_label(line)
feed = {"words": word_ids}
fetch = ["acc", "cost", "prediction"]
fetch_maps = client.predict(feed=feed, fetch=fetch)
if len(fetch_maps) == 1:
print("step: {}, res: {}".format(i, fetch_maps['prediction'][0][1]))
else:
for model, fetch_map in fetch_maps.items():
print("step: {}, model: {}, res: {}".format(i, model, fetch_map[
'prediction'][0][1]))
Client端与普通预测服务没有发生太大的变化。当使用多个模型预测时,预测服务将返回一个key为Server端定义的引擎名称engine_name
,value为对应的模型预测结果的字典。
step: 0, model: cnn, res: 0.560272455215
step: 0, model: bow, res: 0.633530199528
step: 1, model: cnn, res: 0.560272455215
step: 1, model: bow, res: 0.633530199528
step: 2, model: cnn, res: 0.560272455215
step: 2, model: bow, res: 0.633530199528