-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwords.py
59 lines (44 loc) · 1.59 KB
/
words.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import spacy
import os
import codecs
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import nltk
def main():
nlp = spacy.load('en_core_web_lg')
path = os.getcwd() + '/data/'
data_list = os.listdir(path)
data_list = sorted(data_list)
if '.DS_Store' in data_list:
data_list.remove('.DS_Store')
else:
pass
stopwords = nltk.corpus.stopwords.words('english')
stopwords.extend(['–', '=', '>', '↩'])
lemma = WordNetLemmatizer()
holder = []
for i in range(len(data_list)):
fullpath = path + data_list[i]
data = codecs.open(fullpath, 'r', 'utf-8')
data_text = data.read()
data_tokens = data_text.strip().split()
lemma_data_tokens = [lemma.lemmatize(word.lower()) for word in data_tokens]
content = [lemma.lemmatize(word.lower()) for word in data_tokens if word.lower() not in stopwords]
fdist_nostop = nltk.FreqDist(content)
fdist_stop = nltk.FreqDist(lemma_data_tokens)
holder.append(data_text)
print('-----------------------{}-----------------------'.format(data_list[i]))
print('1 gram with stopwords: {}'.format(fdist_stop.most_common(10)))
print('1 gram without stopwords: {}'.format(fdist_nostop.most_common(10)))
for i in range(2,6):
bgs = nltk.ngrams(data_tokens, i)
fdist = nltk.FreqDist(bgs)
print('{} gram: {}'.format(i, fdist.most_common(10)))
for k in range(len(holder)):
nlp_doc = nlp(holder[k])
for y in range(len(holder)):
nlp_other_doc = nlp(holder[y])
print("{} {}: {}".format(data_list[k], data_list[y], round(nlp_doc.similarity(nlp_other_doc),4)))
main()