-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimilarity_gensim.py
53 lines (40 loc) · 1.32 KB
/
similarity_gensim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import gensim
import os
import codecs
from collections import defaultdict
from gensim import corpora, models, similarities
def main():
path = os.getcwd() + '/data/'
data_list = os.listdir(path)
data_list = sorted(data_list)
if '.DS_Store' in data_list:
data_list.remove('.DS_Store')
else:
pass
documents = []
for i in range(len(data_list)):
fullpath = path + data_list[i]
data = codecs.open(fullpath, 'r', 'utf-8')
data_text = data.read()
documents.append(data_text)
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist] for document in documents]
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
texts = [[token for token in text if frequency[token] > 1] for text in texts]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2)
index = similarities.MatrixSimilarity(lsi[corpus])
for j in range(len(data_list)):
doc = documents[j]
vec_bow = dictionary.doc2bow(doc.lower().split())
vec_lsi = lsi[vec_bow]
sims = index[vec_lsi]
for k in range(len(sims)):
print("{} {}: {}".format(data_list[j], data_list[k], round(sims[k],5)))
main()