Sequencing Types and Sequence Quality

STAMPS 2022

An (incomplete) sequencing survey

Image modified from: pacb.com

Read length: 100 - 300 nts, Per-base error-rate: 0.1 - 0.5%

Read length: 100 - 300 nts, Per-base error-rate: 0.1 - 0.5%

Increasing throughput, increasing batch sizes.

Decreasing cost per-base.

Increasing throughput, increasing batch sizes.

Decreasing cost per-base.

Illumina-specific Error Modes

Illumina-specific Error Modes

Declining accuracy towards end of reads:

CAAGTAAGACCTAGACCTAGGAGTAATC**C**AGT**AC**GC**A**G**GT**A

Declining accuracy towards end of reads:

CAAGTAAGACCTAGACCTAGGAGTAATC**C**AGT**AC**GC**A**G**GT**A

Read-through into adapter sequences:

CAAGTAAGACCTAGACCTAGGA**CTGTCTTTATACACATCT**

Frrors

Declining accuracy towards end of reads:

CAAGTAAGACCTAGACCTAGGAGTAATCCAGTACGCAGGTA L// Errors Read-through into adapter sequences: CAAGTAAGACCTAGACCTAGGACTGTCTCTTATACACATCT Adapter

polyG tails in 2-color chemistries:

Illumina-specific Error Modes

Declining accuracy towards end of reads: dephasing.

Read-through into adapter sequences: see below.

polyG tails in 2-color chemistries: G = no signal.

<u>Overlapping</u>

Read-length < DNA length < 2 x Read-length

<u>Overhang</u>

Read-length > DNA length

<u>Separated</u>

2 x Read-length < DNA length

PacBio HiFi sequencing

Read length: 1 - 50 kbases, Per-base error-rate: <0.1%

PacBio HiFi sequencing

Read length: 1 - 50 kbases, Per-base error-rate: <0.1%

Image: Pacbio

PacBio HiFi sequencing

Read length: 1 - 50 kbases, Per-base error-rate: < 0.1%

Image: Pacbio

None.

None.

* that the speaker has been able to identify

None.

\$\$: Higher per-base costs.

Read length: up to 100s of kb, Per-base error-rate: 2-10%

Read length: up to 100s of kb, Per-base error-rate: 2-10%

Image: Wikipedia

Read length: up to 100s of kb, Per-base error-rate: 2-10%

Image: Wikipedia

Oxford Nanopore

GridION

PromethION

Oxford Nanopore

Increasing throughput, increasing batch sizes.

Decreasing cost per-base.

GridION

PromethION

Oxford Nanopore

Increasing throughput, increasing batch sizes.

Decreasing cost per-base.

PromethION

0

MinION

GridION

Highly portable, Fits in hand.

Nanopore specific Error Modes

Homopolymers:

CAAGTAAGACCTAGACCTAGGA**CCCCCCCCCCCCCCCC**TTATA

\ Incorrect length

Nanopore specific Error Modes

Homopolymers:

CAAGTAAGACCTAGACCTAGGA**CCCCCCCCCCCCCCCC**TTATA

Incorrect length

Indels:

Nanopore specific Error Modes

Homopolymers: Signal not 1-1 with nucleotide, see below. Indels: Signal not 1-1 with nucleotide, see below.

Image: Wikipedia

Improving ONT Error Rates

а

0.3 Nanopore R10.4 Nanopore R9.4.1 Probability density function 0.2 0.1 0 86 90 92 94 96 88 98 100 Read accuracy (%)

Base-calling and chemistry has substantially improved. Error rates are down to ~2% in the latest versions.

Sereika, Nature Methods, 2022.

An (incomplete) sequencing survey

Image modified from: pacb.com

An (incomplete) sequencing survey

Image modified from: pacb.com

Image: Robert Edgar, drive5.com

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1000	99.9%		
40	1 in 10000	99.99%		
50	1 in 100000	99.999%		

Image: NYU Center For Genomics and Systems Biology

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy	
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1000	99.9%	
40	1 in 10000	99.99%	
50	1 in 100000	99.999%	

Q is encoded as ASCII characters:

Image: NYU Center For Genomics and Systems Biology

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy	
10	1 in 10	90%	
20	1 in 100	99%	
30	1 in 1000	99.9%	
40	1 in 10000	99.99%	
50	1 in 100000	99.999%	

Q is encoded as ASCII characters:

If it looks like a swear word — #\$!!%& — it's bad quality!

Image: NYU Center For Genomics and Systems Biology

Marker-gene or Metagenomics Sequencing (MGS)

Marker-gene or Metagenomics Sequencing (MGS)

Marker-gene or Metagenomics Sequencing (MGS)

		1	
	ATTAACGAGATTATAACCAGAGTACGAATACCGAAC		
	CACGATTCACAAGGTACCACAAGGTAACATAGCTCC		
	ATTAACCCCTTATAACCAGAGTACGAATACCGAACA		
	ATTAACGAGATTATAACCAGAGAGAGAATACCGAAC		
	CACGATTCTTGTGGTACCACAAGGTAACATAGCTCC		
EF6691 5.0	CACGATTCACAAGGTACCACAAGGTAACATAGCTCC		
	GGGAACTACAATCTCTAAGGTGAAGTCTCAGTCTAT		
	ATTAACGAGATTATAACCAGA	_	

CACGATTCACAAGGTACCAGA ATTAACGAGATTATAACCAGA

Lactobacillus crispatus	1300	5	0	882	596
Ureaplasma urealytica	15	0	220	0	0
Gardnerella vaginalis	22	0	1	0	412
Prevotella intermedia	0	0	8	12	0

Marker-gene or Metagenomics Sequencing (MGS)

Community Sequencing

Berman, BJOG 2020.

Community Sequencing

Berman, BJOG 2020.

Community Sequencing

Berman, BJOG 2020.

Marker-gene Sequencing

2,000,000 bp

300 bp

Marker-gene Sequencing

Shotgun Sequencing

300 bp

2,000,000 bp

Shotgun Sequencing

More info: Happy Belly Bioinformatics, https://astrobiomike.github.io

More info: Happy Belly Bioinformatics, https://astrobiomike.github.io

Shotgun Metagenomics

