-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathFindNearestClone.cpp
134 lines (101 loc) · 3.37 KB
/
FindNearestClone.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <bits/stdc++.h>
using namespace std;
vector<string> split_string(string);
// Complete the findShortest function below.
/*
* For the unweighted graph, <name>:
*
* 1. The number of nodes is <name>_nodes.
* 2. The number of edges is <name>_edges.
* 3. An edge exists between <name>_from[i] to <name>_to[i].
*
*/
int findShortest(int graph_nodes, vector<int> graph_from, vector<int> graph_to, vector<long> ids, int val) {
map<int, vector<int>> c; // graph implementation using map
vector<bool> v(graph_nodes+1); // vector to check if vertex is covered or not
vector<int> dist(graph_nodes+1,INT_MAX);
for(int i=0; i< graph_nodes-1; i++)
{
c[graph_from[i]].push_back(graph_to[i]); // building graph
c[graph_to[i]].push_back(graph_from[i]); // indirected edge
}
for(int clone=1; clone<=graph_nodes; clone++) //BFS to find the shortest path
{
queue<int> s;
if(!v[clone] && ids[clone-1]==val)//check if that edge is the color to analyze
{
s.push(clone);
v[clone]=true;
dist[clone] = 0;
while(!s.empty())
{
int visit = s.front();
s.pop();
for(auto connected: c[visit])
{
if(!v[connected])
{
v[connected]=true;
s.push(connected);
dist[connected] = dist[visit] + 1;
if(ids[connected-1] == val)
{
return dist[connected];
}
}
}
}
}
}
return -1;
// solve here
}
int main()
{
ofstream fout(getenv("OUTPUT_PATH"));
int graph_nodes;
int graph_edges;
cin >> graph_nodes >> graph_edges;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
vector<int> graph_from(graph_edges);
vector<int> graph_to(graph_edges);
for (int i = 0; i < graph_edges; i++) {
cin >> graph_from[i] >> graph_to[i];
cin.ignore(numeric_limits<streamsize>::max(), '\n');
}
string ids_temp_temp;
getline(cin, ids_temp_temp);
vector<string> ids_temp = split_string(ids_temp_temp);
vector<long> ids(graph_nodes);
for (int i = 0; i < graph_nodes; i++) {
long ids_item = stol(ids_temp[i]);
ids[i] = ids_item;
}
int val;
cin >> val;
cin.ignore(numeric_limits<streamsize>::max(), '\n');
int ans = findShortest(graph_nodes, graph_from, graph_to, ids, val);
fout << ans << "\n";
fout.close();
return 0;
}
vector<string> split_string(string input_string) {
string::iterator new_end = unique(input_string.begin(), input_string.end(), [] (const char &x, const char &y) {
return x == y and x == ' ';
});
input_string.erase(new_end, input_string.end());
while (input_string[input_string.length() - 1] == ' ') {
input_string.pop_back();
}
vector<string> splits;
char delimiter = ' ';
size_t i = 0;
size_t pos = input_string.find(delimiter);
while (pos != string::npos) {
splits.push_back(input_string.substr(i, pos - i));
i = pos + 1;
pos = input_string.find(delimiter, i);
}
splits.push_back(input_string.substr(i, min(pos, input_string.length()) - i + 1));
return splits;
}