-
Notifications
You must be signed in to change notification settings - Fork 0
/
step1.py
310 lines (267 loc) · 12.5 KB
/
step1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from cv2 import cv2
import os
import matplotlib.pyplot as plt
from collections import defaultdict
import numpy as np
import pandas as pd
import global_vars as GLOBALS
from sklearn.preprocessing import OneHotEncoder
import yaml
import platform
# Set individual image sizes here
# IMAGE_HEIGHT = 32
# IMAGE_WIDTH = 32
def initialize_hyper(path_to_config):
'''
Reads config.yaml to set hyperparameters
'''
with open(path_to_config, 'r') as stream:
try:
GLOBALS.CONFIG = yaml.safe_load(stream)
return GLOBALS.CONFIG
except yaml.YAMLError as exc:
print(exc)
return None
initialize_hyper('config.yaml')
IMAGE_HEIGHT = GLOBALS.CONFIG['CNN_input_shape'][0]//2
IMAGE_WIDTH = GLOBALS.CONFIG['CNN_input_shape'][0]//2
MERGED_IMAGE_HEIGHT = 2 * IMAGE_HEIGHT
MERGED_IMAGE_WIDTH = 2 * IMAGE_WIDTH
def loadImages(folder):
images = []
file_names = []
for filename in os.listdir(folder):
img = cv2.imread(os.path.join(folder,filename))
if img is not None:
images.append(img)
file_names.append(filename)
return file_names,images
def resize_image(img, method="squeeze"):
# either crop & scale or squeeze input image to IMAGE_HEIGHT x IMAGE_WIDTH
height, width, channels = img.shape
if method == "squeeze":
res = cv2.resize(img,(IMAGE_WIDTH, IMAGE_HEIGHT), interpolation = cv2.INTER_CUBIC)
elif method == "crop":
res = img[0:IMAGE_HEIGHT, 0: IMAGE_WIDTH]
else:
res = img
return res
def merge_part_images(raw_img_dict):
output_dict = {}
# img11 | img12
# ------------------
# img21 | img22
# bathroom | frontal
# ------------------
# bedroom | kitchen
# currently have
# img[0] | img[2]
# ------------------
# img[1] | img[3]
#100: [img1,img2,img3,img4]
#100: img_full
for file_name, img_list in raw_img_dict.items():
merged_image = np.zeros((MERGED_IMAGE_HEIGHT, MERGED_IMAGE_WIDTH, 3), np.uint8)#img_list[0].dtype)
if platform.system()=='Windows':
merged_image[0:IMAGE_HEIGHT, 0: IMAGE_WIDTH] = img_list[0]
merged_image[IMAGE_HEIGHT: MERGED_IMAGE_HEIGHT, 0: IMAGE_WIDTH] = img_list[1]
merged_image[0:IMAGE_HEIGHT, IMAGE_WIDTH: MERGED_IMAGE_WIDTH] = img_list[2]
merged_image[IMAGE_HEIGHT: MERGED_IMAGE_HEIGHT, IMAGE_WIDTH: MERGED_IMAGE_WIDTH] = img_list[3]
else:
merged_image[0:IMAGE_HEIGHT, 0: IMAGE_WIDTH] = img_list[2]
merged_image[IMAGE_HEIGHT: MERGED_IMAGE_HEIGHT, 0: IMAGE_WIDTH] = img_list[3]
merged_image[0:IMAGE_HEIGHT, IMAGE_WIDTH: MERGED_IMAGE_WIDTH] = img_list[0]
merged_image[IMAGE_HEIGHT: MERGED_IMAGE_HEIGHT, IMAGE_WIDTH: MERGED_IMAGE_WIDTH] = img_list[1]
output_dict[file_name] = merged_image
return output_dict
def display_image(img):
cv2.imshow("test", img)
cv2.waitKey(0)
def write_files_to_folder(merged_image_dict, output_dir):
if not os.path.exists(os.path.join(os.path.dirname(__file__), output_dir)):
os.makedirs(output_dir)
for file_num, merged_image in merged_image_dict.items():
filename = "%d.png" % file_num
file_path = os.path.join(output_dir, filename)
cv2.imwrite(file_path, merged_image)
return True
def compile_full_image(folder_path, output_dir):
file_names,images=loadImages(folder_path)
resized_images_dict=defaultdict(list)
for i in range(0,len(images)):
resized_image=resize_image(images[i])
file_name=file_names[i]
resized_images_dict[int(file_name[0:file_name.index("_")])].append(resized_image)
#print(resized_images_dict.keys())
merged_images=merge_part_images(resized_images_dict)
write_files_to_folder(merged_images, output_dir)
return True
def true_dataframe(directory_path):
print(directory_path)
df = pd.read_csv(directory_path, header=None,sep='\s+')
if 'raw_dataset' in directory_path and 'toronto_raw_dataset' not in directory_path:
desired_cols = ['Bedrooms','Bathrooms','SqFt','Zip Code','Price']
else:
desired_cols = ['Bedrooms','Bathrooms','SqFt','Price','Lat','Long']
temp_dict={}
for index,i in enumerate(df.columns):
temp_dict[i] = desired_cols[index]
new_df = df.rename(columns=temp_dict)
print(new_df,new_df.columns)
print('----------------')
print(new_df)
print('----------------')
return new_df
def split_stats_data(directory, tag = 'train', oneh_encoder = None,min_vals=None,max_vals=None):
print(directory)
if tag=='':
# new_df = true_dataframe('raw_dataset'+os.sep+'HousesInfo.txt')
new_df = true_dataframe(GLOBALS.CONFIG['directory']+os.sep+'HousesInfo.txt')
else:
new_df = true_dataframe(directory+'/'+tag+'_'+'HousesInfo.txt')
price_min=new_df['Price'].min()
sqft_min=new_df['SqFt'].min()
bedroom_min=new_df['Bedrooms'].min()
bathroom_min=new_df['Bathrooms'].min()
price_max=new_df['Price'].max()
sqft_max=new_df['SqFt'].max()
bedroom_max=new_df['Bedrooms'].max()
bathroom_max=new_df['Bathrooms'].max()
if tag!='':
min_max_values={'price_min':price_min,'sqft_min':sqft_min,'bedroom_min':bedroom_min,'bathroom_min':bathroom_min,
'price_max':price_max,'sqft_max':sqft_max,'bedroom_max':bedroom_max,'bathroom_max':bathroom_max}
else:
min_max_values=[[bedroom_min,bathroom_min,sqft_min,price_min],
[bedroom_max,bathroom_max,sqft_max,price_max]]
print(min_max_values)
if 'toronto_raw_dataset' in directory:
x_continuous_feats=['Bedrooms','Bathrooms','SqFt','Lat','Long']
categorical_feats=[]
lat_max = new_df['Lat'].max()
long_max = new_df['Long'].max()
lat_min = new_df['Lat'].min()
long_min = new_df['Long'].min()
print(lat_min,long_min,lat_max,long_max)
#exit()
if tag!='':
min_max_values['longtitude_min'] = long_min
min_max_values['latitude_min'] = lat_min
min_max_values['longtitude_max'] = long_max
min_max_values['latitude_max'] = lat_max
else:
min_max_values[0]+=[lat_min]
min_max_values[1]+=[lat_max]
min_max_values[0]+=[long_min]
min_max_values[1]+=[long_max]
pass
else:
x_continuous_feats=['Bedrooms','Bathrooms','SqFt']
categorical_feats=['Zip Code']
y_continuous_feats=['Price']
continuous_feats = x_continuous_feats + y_continuous_feats
#categorical_feats=['Bathrooms']
for i, feature in enumerate(x_continuous_feats):
if max_vals == None:
min_val = new_df[feature].min()
max_val = new_df[feature].max()
else:
min_val = min_vals[i]
max_val = max_vals[i]
if feature!='Lat' and feature!='Long':
new_df[feature]=(new_df[feature]-min_val)/(max_val-min_val)
if feature == 'Lat':# or feature=='Lat':
print(new_df[feature])
#exit()
for i, feature in enumerate(y_continuous_feats):
if max_vals == None:
max_val = new_df[feature].max()
else:
max_val = max_vals[3]
new_df[feature]=(new_df[feature])/(max_val)
cts_data=new_df[continuous_feats].values
#print(new_df['Zip Code'].nunique())
if 'toronto_raw_dataset' not in directory:
cat_onehot = oneh_encoder.transform(new_df[categorical_feats]).toarray()
final_stats_array= np.concatenate([cat_onehot,cts_data], axis=1)
else:
final_stats_array = cts_data
#final_stats_array = cts_data
#final_x_array is following [[one hot vec for beds, one hot vec for bathrooms, sqft as normalized quantity],(...)] #Note that each item in the list is a training example
#final_price_array is following: [normalized price]
final_x_array=final_stats_array[:,:-1]
final_price_array= final_stats_array[:,-1]
return final_x_array, final_price_array, min_max_values, oneh_encoder
#just pass in main_dataset/final as directory I think
#splitting_paramter [train_ratio, val_ratio, test_ratio] example [0.7, 0.15, 0.15]
def split_image_data(directory, tag='train'):
file_list = os.listdir(directory)
'''
get the dimensions of the image from reading 1 image in the folder
for image_name in file_list:
try:
img_shape = cv2.imread(image_name).shape
except:
print("error reading a single image")
break
(rows, cols, channels) = img_shape
train_images = np.zeros(shape=(num_train, rows, cols, channels))
validation_images = np.zeros(shape=(num_validate, rows, cols, channels))
test_images = np.zeros(shape=(num_test, rows, cols, channels))
'''
images = []
#iterate through all images in the folder
img_counter = 0
for img_file in file_list:
img_file_path = os.path.join(directory, img_file)
img = cv2.imread(img_file_path)
img_counter += 1
images.append(img)
images = np.array(images)
# visualize different images in split dataset to ensure proper shape
#display_image(images[20])
return images
def return_splits(directories):
[train_directory, val_directory, test_directory]=directories
train_directory_final = train_directory + '_final'
val_directory_final = val_directory + '_final'
test_directory_final = test_directory + '_final'
#Compile 4 images into one and save them in respective directory (e.g 'train_directory_final' for train images)
compile_full_image(train_directory,train_directory_final)
compile_full_image(val_directory,val_directory_final)
compile_full_image(test_directory,test_directory_final)
#Fetch images from train,valid,test images
train_images = split_image_data(train_directory_final,"Train")
validation_images = split_image_data(val_directory_final,"Validation")
test_images = split_image_data(test_directory_final,"Test")
#Locate path of full houseinfo.txt
dataset_name = GLOBALS.CONFIG['directory']
house_info = 'HousesInfo.txt'
current_working_dir = os.getcwd() #current working directory
dataset_full_path = os.path.join(current_working_dir, dataset_name) #FULL path of the original dataset
house_info_path = os.path.join(dataset_full_path,house_info)
#Initialize OneHotEncoder and fit to full houseinfo.txt for categorical features
df = true_dataframe(house_info_path)
print(dataset_name,'dataset_name')
if 'toronto_raw_dataset' not in dataset_name:
categorical_feats=['Zip Code']
oneh_encoder = OneHotEncoder()
print(dataset_name)
print(df)
oneh_encoder.fit(df[categorical_feats])
#Fetch stats from train,valid,test images
_,_,min_max,_ = split_stats_data(train_directory, tag='',oneh_encoder = oneh_encoder)
train_stats, train_prices, train_min_max, train_oneh_encoder = split_stats_data(train_directory, tag='train',oneh_encoder = oneh_encoder,min_vals=min_max[0],max_vals=min_max[1])
validation_stats, validation_prices, validation_min_max, train_oneh_encoder = split_stats_data(val_directory, tag='val',oneh_encoder = oneh_encoder,min_vals=min_max[0],max_vals=min_max[1])
test_stats, test_prices, test_min_max, test_oneh_encoder = split_stats_data(test_directory, tag='test',oneh_encoder = oneh_encoder,min_vals=min_max[0],max_vals=min_max[1])
else:
_,_,min_max,_ = split_stats_data(train_directory, tag='')
train_stats, train_prices, train_min_max, train_oneh_encoder = split_stats_data(train_directory, tag='train',min_vals=min_max[0],max_vals=min_max[1])
validation_stats, validation_prices, validation_min_max, train_oneh_encoder = split_stats_data(val_directory, tag='val',min_vals=min_max[0],max_vals=min_max[1])
test_stats, test_prices, test_min_max, test_oneh_encoder = split_stats_data(test_directory, tag='test',min_vals=min_max[0],max_vals=min_max[1])
#Create dict with all required information
main_dict={'train_images':train_images/255.0,'train_stats':train_stats,'train_prices':train_prices,'validation_images':validation_images/255.0,'validation_stats':validation_stats,'validation_prices':validation_prices,'test_images':test_images,'test_images':test_images/255.0,'test_stats':test_stats,'test_prices':test_prices, 'train_min_max':train_min_max,'validation_min_max':validation_min_max,'test_min_max':test_min_max}
return main_dict
'''if __name__ == "__main__":
true_dataframe('toronto_raw_dataset'+os.sep+'HousesInfo.txt')
#compile_full_image("toronto_dataset", "processed_dataset")
compile_full_image("raw_dataset", "raw_dataset/final")'''