forked from mpuccio/RooCustomPdfs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RooDSCBShape.cxx
137 lines (110 loc) · 4.06 KB
/
RooDSCBShape.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*****************************************************************************
* Project: RooFit *
* *
* This code was autogenerated by RooClassFactory *
* *
* Code massaged by Giulio Dujany - University of Manchester *
*****************************************************************************/
// Double sided crystal ball
// mu and sig are the parameters of the gaussians
// a1, n1 the parameters of the left power law tail
// a2, n2 the parameters of the right power law tail
// a1, a2 >= 0; n1, n2 >= 1
#include "Riostream.h"
#include "RooDSCBShape.h"
#include "RooAbsReal.h"
#include "RooAbsCategory.h"
#include <math.h>
#include "TMath.h"
ClassImp(RooDSCBShape)
RooDSCBShape::RooDSCBShape(const char *name, const char *title,
RooAbsReal& _x,
RooAbsReal& _mu,
RooAbsReal& _sig,
RooAbsReal& _a1,
RooAbsReal& _n1,
RooAbsReal& _a2,
RooAbsReal& _n2) :
RooAbsPdf(name,title),
x("x","x",this,_x),
mu("mu","mu",this,_mu),
sig("sig","sig",this,_sig),
a1("a1","a1",this,_a1), //a1 must be > 0
n1("n1","n1",this,_n1),
a2("a2","a2",this,_a2), //a2 must be > 0
n2("n2","n2",this,_n2)
{
}
RooDSCBShape::RooDSCBShape(const RooDSCBShape& other, const char* name) :
RooAbsPdf(other,name),
x("x",this,other.x),
mu("mu",this,other.mu),
sig("sig",this,other.sig),
a1("a1",this,other.a1),
n1("n1",this,other.n1),
a2("a2",this,other.a2),
n2("n2",this,other.n2)
{
}
Double_t RooDSCBShape::evaluate() const
{
double u = (x-mu)/sig;
double A1 = TMath::Power(n1/TMath::Abs(a1),n1)*TMath::Exp(-a1*a1/2);
double A2 = TMath::Power(n2/TMath::Abs(a2),n2)*TMath::Exp(-a2*a2/2);
double B1 = n1/a1 - a1;
double B2 = n2/a2 - a2;
double result(1);
if (u<-TMath::Abs(a1)) result *= A1*TMath::Power(B1-u,-n1);
else if (u<TMath::Abs(a2)) result *= TMath::Exp(-u*u/2);
else result *= A2*TMath::Power(B2+u,-n2);
return result;
}
Int_t RooDSCBShape::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char*) const
{
if (matchArgs(allVars,analVars,x)) return 1 ;
return 0 ;
}
Double_t RooDSCBShape::analyticalIntegral(Int_t code, const char* r) const
{
double umin = (x.min(r) - mu) / sig;
double umax = (x.max(r) - mu) / sig;
R__ASSERT(code==1);
double integral = 0.;
integral += IntPwLw(TMath::Max(-umax, TMath::Abs(a1)), TMath::Max(-umin, TMath::Abs(a1)), a1, n1);
integral += IntGaus(TMath::Max(umin, -TMath::Abs(a1)), TMath::Min(umax, TMath::Abs(a2)));
integral += IntPwLw(TMath::Max(umin, TMath::Abs(a2)), TMath::Max(umax, TMath::Abs(a2)), a2, n2);
return sig * integral;
}
double RooDSCBShape::IntGaus(double x0, double x1) const
{
static const double rootPiBy2 = TMath::Sqrt(TMath::PiOver2());
if (x0 >= x1) return 0; // needed in case umin > a2
// N.B. Erf is integral from 0
if (x0*x1<0) // they are at different side of zero
{
return rootPiBy2 * ( TMath::Erf(TMath::Abs(x1) / TMath::Sqrt2()) + TMath::Erf(TMath::Abs(x0) / TMath::Sqrt2()) );
}
else //They are at the same side of zero
{
return rootPiBy2 * TMath::Abs( TMath::Erf(TMath::Abs(x1) / TMath::Sqrt2()) - TMath::Erf(TMath::Abs(x0) / TMath::Sqrt2()) );
}
}
double RooDSCBShape::IntPwLw(double x0, double x1, double alpha, double n) const
{
if (x0 == x1) return 0; // already implicit below but so it's clear
bool useLog = false;
if(fabs(n - 1.0) < 1.0e-05)
useLog = true;
double A = TMath::Power(n/TMath::Abs(alpha),n)*TMath::Exp(-alpha*alpha/2);
double B = n/TMath::Abs(alpha) - TMath::Abs(alpha);
double result = 0.;
if(useLog)
{
result = A * ( TMath::Log(B + x1) - TMath::Log(B + x0));
}
else
{
result = A / (1. - n) * ( TMath::Power(B + x1, 1. - n) - TMath::Power(B + x0, 1. - n) );
}
return result;
}