-
Notifications
You must be signed in to change notification settings - Fork 1
/
poster.tex
223 lines (200 loc) · 6.98 KB
/
poster.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
% SciPy: Posters are commonly 36 or 42 inches tall and can be 72 inches wide.
\documentclass[a0paper,fleqn]{betterposter}
\usepackage{bm}
\graphicspath{{figures/}}
\usepackage[hidelinks]{hyperref}
% Uncomment the following commands to customise the format
%% Setting the width of columns
% Left column
\setlength{\leftbarwidth}{0.27\paperwidth}
% Right column
\setlength{\rightbarwidth}{0.27\paperwidth}
%% Setting the column margins
% Horizontal margin
%\setlength{\columnmarginvertical}{0.05\paperheight}
% Vertical margin
%\setlength{\columnmarginhorizontal}{0.05\paperheight}
% Horizontal margin for the main column
%\setlength{\maincolumnmarginvertical}{0.15\paperheight}
% Vertical margin for the main column
%\setlength{\maincolumnmarginhorizontal}{0.15\paperheight}
% Text font
\renewcommand{\fontsizestandard}{\fontsize{32}{46} \selectfont}
% Main column font
\renewcommand{\fontsizemain}{\fontsize{148.00}{280.00} \selectfont}
% Title font
\renewcommand{\fontsizetitle}{\fontsize{101.50}{152.00} \selectfont}
% Author font
\renewcommand{\fontsizeauthor}{\fontsize{33.55}{47.3} \selectfont}
\newcommand{\fontsizeinstitution}{\fontsize{20}{25} \selectfont}
% Section font
\renewcommand{\fontsizesection}{\fontsize{61.00}{86.00} \selectfont}
\renewcommand{\fontsizesubsection}{\fontsize{48.00}{57.00} \selectfont}
% Changing font sizes for a specific text segment
% Place the text inside brackets:
% {\fontsize{28}{35} \selectfont Your text goes here}
%% Changing colours
% Background of side columns
%\renewcommand{\columnbackgroundcolor}{black}
% Font of side columns
%\renewcommand{\columnfontcolor}{gray}
% Background of main column
%\renewcommand{\maincolumnbackgroundcolor}{empirical}
%\renewcommand{\maincolumnbackgroundcolor}{theory}
%\renewcommand{\maincolumnbackgroundcolor}{methods}
%\renewcommand{\maincolumnbackgroundcolor}{intervention}
% Font of main column
%\renewcommand{\maincolumnfontcolor}{gray}
% Disable hyphenation
\hyphenpenalty=10000
\exhyphenpenalty=10000
\begin{document}
\betterposter{
% MAIN COLUMN
\maincolumn{
% Main space
\textbf{pyhf} is a \textbf{pure Python} statistical fitting library that uses \textbf{tensors} and \textbf{autograd} to speed up physics analysis at the LHC
}{
% Bottom space
% QR code
\qrcode{qr_code.pdf}{smartphoneWhite}{
\textbf{Take a picture} to
\\visit the pyhf website\\
\href{https://diana-hep.org/pyhf}{https://diana-hep.org/pyhf}
}
}
}{
% LEFT COLUMN
\title{pyhf}
\vspace{-1em}
\textbf{pure Python implementation of HistFactory}
\author{{\href{https://www.matthewfeickert.com/}{\underline{Matthew Feickert}$^{1}$}}, \href{http://www.lukasheinrich.com/}{Lukas Heinrich$^{2}$}, \href{https://giordonstark.com/}{Giordon Stark$^{3}$}, \href{http://theoryandpractice.org/}{Kyle Cranmer$^{4}$}}
\institution{1 Southern Methodist University,~~~2 CERN,~~~3 University of California Santa Cruz,~~~4 New York University}
%
\section{HistFactory}
One of the most widely used statistical models in \textbf{high energy physics} for binned measurements and searches
\begin{center}
\includegraphics[width=\textwidth]{HistFactory_result_examples.png}
\end{center}
%
\vspace{-0.5em}
\begin{minipage}{0.29\textwidth}
\begin{center}
\textbf{Standard Model}
\end{center}
\end{minipage}%
\quad
\begin{minipage}{0.36\textwidth}
\begin{center}
\textbf{Supersymmetry}
\end{center}
\end{minipage}%
\quad
\begin{minipage}{0.27\textwidth}
\begin{center}
\textbf{Exotic Physics}
\end{center}
\end{minipage}%
%
\vspace{2em}
%
\textbf{Declarative binned likelihoods}
\vspace{1em}
\[
f(\bm{n}, \bm{a} \,|\,\bm{\phi},\bm{\chi}) = \underbrace{\color{blue}{\prod_{c\in\mathrm{\,channels}} \prod_{b \in \mathrm{\,bins}_c}\textrm{Pois}\left(n_{cb} \,\middle|\, \nu_{cb}\left(\bm{\eta},\bm{\chi}\right)\right)}}_{\substack{\text{Simultaneous measurement}\\%
\text{of multiple channels}}} \underbrace{\color{red}{\prod_{\chi \in \bm{\chi}} c_{\chi}(a_{\chi} |\, \chi)}}_{\substack{\text{constraint terms}\\%
\text{for }\text{``auxiliary measurements''}}}
\]
%}
\vspace{1em}
\textcolor{blue}{Primary Measurement}:
\begin{itemize}
\item Multiple disjoint ``channels'' (e.g. event observables) each with multiple bins of data
\item Example parameter of interest: strength of physics signal, $\mu$
\end{itemize}
\textcolor{red}{Auxiliary Measurements}:
\begin{itemize}
\item Nuisance parameters (e.g. in-situ measurements of background samples)
\item Systematic uncertainties (e.g. normalization, shape, luminosity)
\end{itemize}
\vfill
\section{Performance}
Efficient use of tensor computation makes pyhf fast
\begin{center}
\includegraphics[width=\textwidth]{performance_only.pdf}
\end{center}
Competitive with traditional \texttt{C++} implementation --- often faster
% \vspace{-1em}
%
\vfill
\subsection{Hardware Acceleration}
For ML-library tensor backends the computational graph can be transparently placed on hardware accelerators: \textbf{GPUs} and \textbf{TPUs} for order of magnitude speed-up in computation
\begin{center}
\includegraphics[width=\textwidth]{scaling_hardware.pdf}
\end{center}
}{
% RIGHT COLUMN
\subsection{Implementation}
\begin{center}
\includegraphics[width=0.9\textwidth]{computational_graph3.pdf}
\end{center}
The computational graph of multidimensional array operations for likelihood function of a physics analysis defined through HistFactory
%
\vspace{0.5em}
%
\begin{minipage}{0.33\textwidth}
\begin{center}
\includegraphics[width=\textwidth]{NumPy_logo.pdf}
\end{center}
\end{minipage}%
\quad
\begin{minipage}{0.33\textwidth}
\begin{center}
\includegraphics[width=\textwidth]{TensorFlow_logo.pdf}
\end{center}
\end{minipage}%
\quad
\begin{minipage}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{Pytorch_logo.pdf}
\end{center}
\end{minipage}%
%
\vspace{0.5em}
%
Use of $n$-dimensional array (``tensor'') operations through a common API layer around high performance tensor libraries
\vspace{-1em}
\subsection{JSON Specification}
The full likelihood can be expressed as a \textbf{single JSON document}\\
Archive friendly for analysis presentation
\vspace{0.5em}
\begin{center}
\includegraphics[width=0.9\textwidth]{carbon_JSON_spec.png}
\end{center}
\vspace{-1em}
\begin{center}
{\fontsizeinstitution\textbf{Example:} 2 binned single channel with 2 samples with 1 parameter of interest and 1 nuisance parameter}
\end{center}
\begin{center}
\includegraphics[width=0.9\textwidth]{carbon_pyhf_CLs.png}
\end{center}
\vspace{1em}
\vfill
\begin{minipage}{0.58\textwidth}
\begin{center}
\href{http://iris-hep.org/}{\includegraphics[width=\textwidth]{IRIS-HEP_logo}}
\end{center}
\end{minipage}%
\quad
\begin{minipage}{0.38\textwidth}
\begin{center}
\href{https://pypi.org/project/pyhf/}{\includegraphics[width=\textwidth]{pyhf_PyPI.pdf}}
\end{center}
\vspace{1em}
\begin{center}
\href{https://doi.org/10.5281/zenodo.1169739}{\includegraphics[width=\textwidth]{zenodo_doi.pdf}}
\end{center}
\vspace{3em}
\end{minipage}%
}
\end{document}