-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path02 imbalanced outcome.R
130 lines (97 loc) · 4 KB
/
02 imbalanced outcome.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
library(caret)
library(rsample)
library(yardstick)
library(recipes)
data(Caravan, package = "ISLR")
# Data Splitting
set.seed(1234)
splits <- initial_split(Caravan, prop = 0.7)
Caravan.train <- training(splits)
Caravan.test <- testing(splits)
# The Problem -------------------------------------------------------------
table(Caravan.train$Purchase) |> proportions()
# As we can see, the classes are very unbalanced.
# This means that, technically, we can achieve high accuracy by simply predicting "No".
Caravan.test$pred_NO <- factor("No", levels = c("No", "Yes"))
Caravan.test |> accuracy(truth = Purchase, estimate = pred_NO)
# But as we can see, we essentially have no specificity
table(Truth = Caravan.test$Purchase,
Estimate = Caravan.test$pred_NO)
metrics <- metric_set(accuracy, specificity, sensitivity)
Caravan.test |> metrics(truth = Purchase, estimate = pred_NO)
# Training with Imbalance Data --------------------------------------------
rec <- recipe(Purchase ~ ., data = Caravan.train) |>
step_scale(all_numeric_predictors())
tc <- trainControl(method = "none", classProbs = TRUE)
tg <- expand.grid(
k = 10 # [1, N] neighbors
)
knn0 <- train(
x = rec,
data = Caravan.train,
method = "knn",
metric = "Accuracy",
trControl = tc,
tuneGrid = tg
)
# Up- and Down-Sampling ---------------------------------------------------
# We can also sample our CV samples such that we artificially achieve class
# balances. See:
# https://topepo.github.io/caret/subsampling-for-class-imbalances.html
#
# The main methods are:
# down-sampling: randomly subset all the classes in the training set so that
# their class frequencies match the least prevalent class.
# up-sampling: randomly sample (with replacement) the minority class(es) to be
# the same size as the majority class.
# hybrid methods: techniques such as SMOTE and ROSE down-sample the majority
# class and synthesize new data points in the minority class.
#
# We will use up- and down-sampling:
tc_up <- trainControl(method = "none", classProbs = TRUE, sampling = "up")
tc_down <- trainControl(method = "none", classProbs = TRUE, sampling = "down")
knn_up <- train(
x = rec,
data = Caravan.train,
method = "knn",
metric = "Accuracy",
trControl = tc_up,
tuneGrid = tg
)
knn_down <- train(
x = rec,
data = Caravan.train,
method = "knn",
metric = "Accuracy",
trControl = tc_down,
tuneGrid = tg
)
# Comparing Results -------------------------------------------------------
# Get raw predictions
Caravan.test$pred0 <- predict(knn0, newdata = Caravan.test)
Caravan.test$pred_up <- predict(knn_up, newdata = Caravan.test)
Caravan.test$pred_down <- predict(knn_down, newdata = Caravan.test)
Caravan.test |> metrics(truth = Purchase, estimate = pred_NO)
Caravan.test |> metrics(truth = Purchase, estimate = pred0)
Caravan.test |> metrics(truth = Purchase, estimate = pred_up)
Caravan.test |> metrics(truth = Purchase, estimate = pred_down)
# As we can see, the accuracy (and sensitivity) have dropped, but specificity is
# higher.
# We can also compare ROC AUCs:
# Get probabilistic predictions
Caravan.test$pred0_p <- predict(knn0, newdata = Caravan.test, type = "prob")[["No"]]
Caravan.test$pred_up_p <- predict(knn_up, newdata = Caravan.test, type = "prob")[["No"]]
Caravan.test$pred_down_p <- predict(knn_down, newdata = Caravan.test, type = "prob")[["No"]]
Caravan.test |> roc_auc(truth = Purchase, pred0_p)
Caravan.test |> roc_auc(truth = Purchase, pred_up_p) # About the same?
Caravan.test |> roc_auc(truth = Purchase, pred_down_p) # Better!
library(ggplot2)
update_geom_defaults("path", list(linewidth = 1))
ggplot(mapping = aes(1 - specificity, sensitivity)) +
geom_abline(linewidth = 1, linetype = "dashed") +
geom_path(aes(color = "(None)"), data = roc_curve(Caravan.test, Purchase, pred0_p)) +
geom_path(aes(color = "Up"), data = roc_curve(Caravan.test, Purchase, pred_up_p)) +
geom_path(aes(color = "Down"), data = roc_curve(Caravan.test, Purchase, pred_down_p)) +
theme_bw() +
coord_equal() +
labs(color = "Sampling")